UNECE Work Session on Statistical Data Editing Budapest, Hungary, 14-16 September 2015

Multiple Ratio Imputation by the EMB Algorithm

National Statistics Center (Japan) Masayoshi Takahashi

Notes: The views and opinions expressed in this presentation are the authors' own, not necessarily those of the institution.

Outline

- 1. Missing Data Problems and Existing Imputation Methods
- 2. Theory of Multiple Ratio Imputation
- 3. Monte Carlo Evidence
- 4. Empirical Example

Missing Data and Ratio Imputation

- Missing data problems are ubiquitous in many fields.
- In official statistics, one of the common treatments of missing data is ratio imputation.

Single Ratio Imputation Model

- Form of a simple regression model without an intercept
- Slope coefficient calculated by the ratio between the means of two variables

$$\begin{aligned} \widehat{Y}_{i1} &= \widehat{\omega} Y_{i2} \text{ (Deterministic)} \\ \widehat{Y}_{i1} &= \widehat{\omega} Y_{i2} + \widehat{u}_i \text{ (Stochastic)} \\ \text{ where } \widehat{\omega} &= \overline{Y}_{1,obs} / \overline{Y}_{2,obs} \end{aligned}$$

de Waal et al. (2011)

- Thompson & Washington (2012)
- Office for National Statistics (2014)

Multiple Imputation

Recommended practice from statisticians
 Known to be the gold standard of treating missing data

Rubin (1987) Little & Rubin (2002) Baraldi & Enders (2010) Cheema (2014)

Multiple Imputation

Multiple imputation in theory

- Randomly draw several imputed values from the distribution of missing data.
- True distribution of missing data
 - Unobserved by definition
 - Always unknown

Solution

Estimate the posterior distribution of missing data based on observed data, and make a random draw of imputed values.

Existing Software for Multiple Imputation

R-Packages

- Amelia II (EMB)
- MICE (FCS)
- NORM (MCMC)

None of them allows to perform multiple ratio imputation.

- Commercial Software Programs
 - SAS Proc MI (MCMC/FCS)
 - SOLAS (FCS)
 - SPSS Missing Values (FCS)

1. Missing Data Problems and Existing Imputation Methods

In the Literature

	Deterministic Single Imputation	Stochastic Single Imputation	Multiple Imputation
Regression Imputation	Exist	Exist	Exist
Ratio Imputation	Exist	Exist	Not Exist

Theory of Multiple Ratio Imputation

2. Theory of Multiple Ratio Imputation

Multiple Ratio Imputation

Literature

Devoid of multiple ratio imputation

This paper

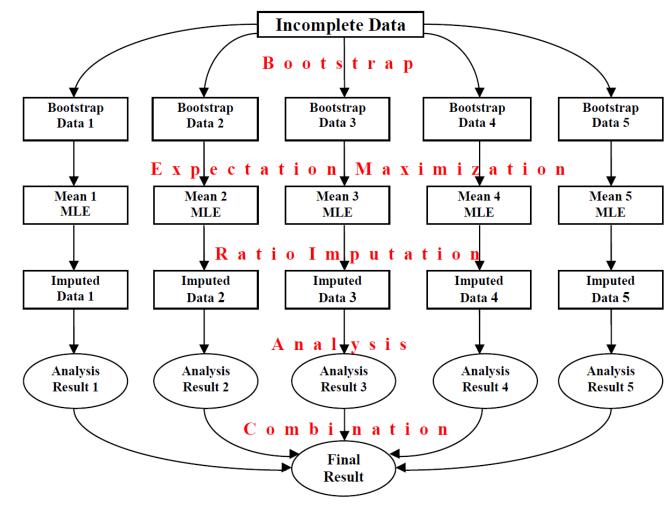
- Proposes a novel application of the Expectation-Maximization with Bootstrapping (EMB) algorithm to ratio imputation
- Proposes multiple ratio imputation

2. Theory of Multiple Ratio Imputation

Multiple Ratio Imputation

\Box Value of ω

• Estimated by $\widehat{\omega} = \overline{Y}_{1,obs} / \overline{Y}_{2,obs}$


To create multiple ratio imputation

The mean vector is what needs to be randomly drawn from the posterior distribution of missing data given observed data.

2. Theory of Multiple Ratio Imputation

Multiple Ratio Imputation by the EMB Algorithm

Monte Carlo Settings 1

1,000 iterations

- Random draw from the following multivariate normal distribution:
 - Variables y1 and y2 are normally distributed with the mean vector (6, 10) and the standard deviation vector (1, 1).
 - The correlation between y1 and y2 is set to 0.6.

Monte Carlo Settings 2

Sample Size

- n = 50, n =100, n =200, n =500, and n =1,000
- Three data generation processes
 MCAR, MAR, and NI
 Average missing rates
 15%, 25%, and 35%

Monte Carlo Settings 3

RRMSE: Relative Root Mean Square Errors

- Mean
- Standard Deviation
- t-statistics in regression
- Comparisons of
 - Deterministic ratio imputation
 - Stochastic ratio imputation
 - Regular multiple imputation (Amelia II)
 - Multiple ratio imputation

Monte Carlo Evidence: Mean

Sample	Average	RMSE Compariso Missing	Listwise	Deterministic	Multiple
Size	Missing	Mechanism	Deletion	Ratio	Ratio
Size	Rate	Mechanishi	Deletion	Imputation	Imputation
	Rate	MCAR	0.009	0.008	0.008
	15%	MAR	0.005	0.008	0.008
	1570	NI	0.026	0.003	0.008
		MCAR	0.014	0.011	0.010
50	25%	MAR	0.030	0.010	0.011
	2370	NI	0.048	0.032	0.033
		MCAR	0.043	0.012	0.035
	35%	MAR	0.045	0.012	0.014
		NI	0.075	0.050	0.052
		MCAR	0.007	0.006	0.006
	15%	MAR	0.016	0.005	0.005
		NI	0.024	0.016	0.016
		MCAR	0.010	0.008	0.008
100	25%	MAR	0.028	0.007	0.008
		NI	0.020	0.030	0.030
		MCAR	0.012	0.010	0.010
	35%	MAR	0.044	0.008	0.010
		NI	0.073	0.048	0.050
		MCAR	0.005	0.004	0.004
	15%	MAR	0.015	0.004	0.004
		NI	0.024	0.016	0.016
		MCAR	0.007	0.005	0.005
200	25%	MAR	0.028	0.005	0.005
		NI	0.045	0.029	0.030
		MCAR	0.009	0.007	0.007
	35%	MAR	0.043	0.006	0.007
		NI	0.072	0.048	0.049
		MCAR	0.003	0.003	0.003
1	15%	MAR	0.014	0.002	0.002
		NI	0.024	0.015	0.015
		MCAR	0.004	0.003	0.003
500	25%	MAR	0.027	0.003	0.003
		NI	0.045	0.029	0.029
		MCAR	0.006	0.004	0.004
	35%	MAR	0.043	0.004	0.005
		NI	0.072	0.047	0.048
1000		MCAR	0.002	0.002	0.002
	15%	MAR	0.014	0.002	0.002
		NI	0.024	0.015	0.015
		MCAR	0.003	0.003	0.003
	25%	MAR	0.027	0.002	0.002
		NI	0.044	0.029	0.029
		MCAR	0.004	0.003	0.003
	35%	MAR	0.043	0.002	0.003
		NI	0.072	0.047	0.048

Note. Average over the 1,000 simulations for each data type. M = 100 for multiple ratio imputation

Monte Carlo Evidence: Mean

- In all of the 45 patterns, deterministic ratio imputation and multiple imputation both outperform listwise deletion.
- Between the ratio imputation methods, deterministic ratio imputation slightly performs better than multiple ratio imputation in 32 out of the 45 patterns with 13 ties.

However, 43 out of the 45 patterns are within a 0.01-point difference in terms of the RRMSE.
National Statistics Center

Monte Carlo Evidence: Mean

Table 7. Mean of y1 (MAR-35%)					
	Complete	Listwise	Deterministic	Multiple	
	Data	Deletion	Ratio Imputation	Ratio Imputation	
Mean	6.000	5.741	6.000	5.999	
BISD	NA	NA	NA	0.029	
CI (95%)	NA	NA	NA	5.941, 6.057	
п	500	325	500	500	

Note. NA means Not-Applicable. Average over the 1,000 simulations. M = 100 for multiple ratio imputation

Monte Carlo Evidence: Standard Deviation

Sample	Average	Missing	<u>e Standard Dev</u> Listwise	Stochastic	Multiple
Size	Missing	Mechanism	Deletion	Ratio	Ratio
	Rate			Imputation	Imputation
		MCAR	0.042	0.048	0.037
	15%	MAR	0.045	0.047	0.038
		NI	0.048	0.052	0.043
		MCAR	0.059	0.062	0.049
50	25%	MAR	0.066	0.062	0.054
		NI	0.079	0.074	0.067
		MCAR	0.075	0.075	0.058
	35%	MAR	0.088	0.071	0.067
		NI	0.146	0.117	0.118
		MCAR	0.029	0.035	0.026
	15%	MAR	0.031	0.034	0.026
		NI	0.035	0.037	0.031
		MCAR	0.040	0.044	0.033
100	25%	MAR	0.046	0.044	0.037
		NI	0.064	0.058	0.054
		MCAR	0.052	0.052	0.040
	35%	MAR	0.067	0.054	0.047
		NI	0.121	0.097	0.098
		MCAR	0.021	0.025	0.018
	15%	MAR	0.022	0.025	0.019
		NI	0.025	0.027	0.023
-		MCAR	0.028	0.030	0.023
200	25%	MAR	0.036	0.032	0.027
		NI	0.049	0.044	0.042
_		MCAR	0.037	0.037	0.028
	35%	MAR	0.053	0.038	0.034
		NI	0.109	0.086	0.088
		MCAR	0.014	0.016	0.012
	15%	MAR	0.014	0.016	0.012
		NI	0.018	0.019	0.016
		MCAR	0.018	0.020	0.015
500	25%	MAR	0.024	0.020	0.017
		NI	0.042	0.038	0.036
		MCAR	0.022	0.023	0.018
	35%	MAR	0.043	0.024	0.021
		NI	0.106	0.083	0.021
1000		MCAR	0.010	0.012	0.008
	15%	MAR	0.010	0.011	0.008
		NI	0.014	0.015	0.013
		MCAR	0.013	0.014	0.015
	25%	MAR	0.019	0.014	0.011
		NI	0.040	0.037	0.033
		MCAR	0.040	0.017	0.033
	35%	MAR	0.038	0.017	0.013
	2279	NI	0.100	0.080	0.014

20

Note. Average over the 1,000 simulations for each data type. M = 100 for multiple ratio imputation

Monte Carlo Evidence: Standard Deviation

- In all of the 45 patterns, multiple ratio imputation always outperforms listwise deletion.
- Between the ratio imputation methods, multiple ratio imputation often performs better than stochastic ratio imputation, 43 out of the 45 patterns.
- Therefore, this study contends that multiple ratio imputation is the preferred method for the estimation of the standard deviation.

Monte Carlo Evidence: t-statistics in Regression

Sample	Average	Missing	Listwise	(45,000 Datasets) Multiple	Multiple
Size	Missing	Mechanism	Deletion	Imputation	Ratio
	Rate			Amelia II	Imputation
		MCAR	0.126	0.103	0.087
	15%	MAR	0.137	0.107	0.093
		NI	0.141	0.114	0.099
		MCAR	0.185	0.144	0.113
50	25%	MAR	0.220	0.173	0.135
		NI	0.222	0.175	0.138
		MCAR	0.242	0.189	0.134
	35%	MAR	0.317	0.247	0.171
		NI	0.328	0.269	0.179
		MCAR	0.104	0.075	0.066
	15%	MAR	0.113	0.080	0.071
		NI	0.111	0.081	0.072
-		MCAR	0.159	0.109	0.087
100	25%	MAR	0.192	0.127	0.101
		NI	0.194	0.136	0.108
		MCAR	0.218	0.153	0.107
	35%	MAR	0.294	0.191	0.131
		NI	0.297	0.224	0.147
		MCAR	0.091	0.059	0.052
	15%	MAR	0.101	0.064	0.056
		NI	0.101	0.066	0.060
-		MCAR	0.145	0.092	0.075
200	25%	MAR	0.181	0.106	0.085
		NI	0.177	0.117	0.095
		MCAR	0.208	0.136	0.097
	35%	MAR	0.282	0.159	0.113
		NI	0.282	0.199	0.133
		MCAR	0.084	0.050	0.044
	15%	MAR	0.094	0.053	0.047
		NI	0.093	0.058	0.051
		MCAR	0.141	0.086	0.066
500	25%	MAR	0.171	0.092	0.069
		NI	0.170	0.107	0.083
-		MCAR	0.202	0.127	0.086
	35%	MAR	0.279	0.144	0.097
		NI	0.282	0.193	0.121
		MCAR	0.080	0.046	0.041
1000	15%	MAR	0.089	0.046	0.043
		NI	0.091	0.048	0.049
		MCAR	0.137	0.053	0.063
	25%	MAR	0.167	0.084	0.067
		NI	0.168	0.105	0.083
		MCAR	0.198	0.122	0.084
	35%	MAR	0.275	0.132	0.092
		NI	0.275	0.186	0.120

22

Note. Average over the 1,000 simulations for each data type. M = 100 for multiple imputation

Monte Carlo Evidence: t-statistics in Regression

- In all of the 45 patterns, regular multiple imputation and multiple ratio imputation both outperform listwise deletion.
- Multiple ratio imputation always outperforms regular multiple imputation under the condition where the true population model satisfies the assumption of ratio estimation.

Summary of the Findings

	Mean	Std. Dev.	t-Stats
Listwise Deletion	Poor	Poor	Poor
Existing Method	Excellent	Fair	Fair
Multiple Ratio Imputation	Excellent	Excellent	Excellent

Empirical Example

Application to Japanese Economic Census

- Data: 2012 Economic Census
 - Division I (Wholesale and Retail Trade)Tokyo
- Target variable for imputation: Turnover
- Quantity of interest: Mean of turnover
- Auxiliary variable: Cost
- Our data
 - Focus on the establishments and enterprises with the number of employees equal to 1.
 National Statistics Center

4. Empirical Example

Results

	Listwise Deletion	Deterministic Ratio Imputation	Multiple Ratio Imputation
Mean	3569.12	3526.73	3526.69
BISD	NA	NA	4.74
CI	NA	NA	3517.21,
(95%)			3536.16

Note: BISD = Between-Imputation Standard Deviation

Thank you

