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I. Introduction 

1. Missing data problems are ubiquitous in many fields, including official statistics, where one of
the common treatments of missing data is ratio imputation (de Waal et al., 2011; Thompson & Washington, 
2012; Office for National Statistics, 2014). On the other hand, multiple imputation has been the 
recommended practice from statisticians (Rubin, 1987; Little & Rubin, 2002). Among statisticians, 
multiple imputation is known to be the gold standard of treating missing data (Baraldi & Enders, 2010; 
Cheema, 2014). While ratio imputation is often employed to deal with missing values in practice, the 
literature is devoid of multiple ratio imputation, leading to a gap between theory and practice. This paper 
proposes a novel application of the Expectation-Maximization with Bootstrapping (EMB) algorithm to 
ratio imputation, where multiply-imputed values will be created for each missing value. The objective of 
this paper is to present the mechanism of multiple ratio imputation and to assess the performance compared 
to traditional imputation methods. For this purpose, Monte Carlo simulation is applied to the newly-
developed R-function for multiple ratio imputation. A small application to the 2012 Japanese Economic 
Census data is also presented to illustrate the usefulness of multiple ratio imputation. Also, this research 
implemented multiple ratio imputation by the Expectation-Maximization with Bootstrapping (EMB) 
algorithm in the R statistical environment (to be released soon). 

II. Assumptions of Missing Mechanisms

2. Suppose that 𝐃 is an 𝑛 × 𝑝  dataset, where 𝑛  is the number of observations and 𝑝 is the
number of variables. Also, let 𝐑 be a response indicator matrix, whose dimension is the same as 𝐃. 
Whenever 𝐃 is observed 𝐑 = 1, and whenever 𝐃 is not observed 𝐑 = 0. Note, however, that R in 
Italics refers to the R statistical environment in this paper. Furthermore, 𝐃𝐨𝐛𝐬 refers to the observed part 
of data, and 𝐃𝐦𝐢𝐬  refers to the missing part of data, i.e., 𝐃 = {𝐃𝐨𝐛𝐬, 𝐃𝐦𝐢𝐬}. The first assumption is 
Missing Completely At Random (MCAR), which is 𝑃(𝐑|𝐃) = 𝑃(𝐑). The second assumption is Missing 
At Random (MAR), which is 𝑃(𝐑|𝐃) = 𝑃(𝐑|𝐃𝐨𝐛𝐬). The third assumption is Non-Ignorable (NI), which 
is 𝑃(𝐑|𝐃) ≠ 𝑃(𝐑|𝐃𝐨𝐛𝐬). 

III. Existing Algorithms and Software for Multiple Imputation

3. Before moving on to the discussion of multiple ratio imputation, this section is a concise review
of the existing multiple imputation algorithms and software programs. As of today, there are three major 
algorithms for multiple imputation. 
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Abe (Keio University), Dr. Tetsuto Himeno (Seikei University), Mr. Nobuyuki Sakashita (National Statistics Center), and Ms. 
Kazumi Wada (National Statistics Center) for their valuable comments on earlier versions of this paper. However, any remaining 
errors are the author’s responsibility. Also, note that the views and opinions expressed in this paper are the author’s own, not 
necessarily those of the institution. The analyses in this paper were conducted using R 3.1.0. 
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4. The first traditional algorithm is based on Markov chain Monte Carlo (MCMC). This is the 
original version of Rubin’s (1978, 1987) multiple imputation. R-Package Norm currently implements this 
version of multiple imputation (Schafer, 1997; Fox, 2015). A commercial software program using the 
MCMC algorithm is SAS Proc MI (SAS, 2011). The second major algorithm is called Fully Conditional 
Specification (FCS), also known as chained equations by van Buuren (2012). R-Package MICE currently 
implements this version of multiple imputation (van Buuren & Groothuis-Oudshoorn, 2011; van Buuren & 
Groothuis-Oudshoorn, 2015). Other commercial software programs using the FCS algorithm are SPSS 
Missing Values (SPSS, 2009) and SOLAS (Statistical Solutions, 2011). The FCS algorithm is known to be 
flexible. The third relatively new algorithm is the EMB algorithm by Honaker & King (2010). R-Package 
Amelia II currently implements this version of multiple imputation (Honaker et al., 2011; Honaker et al., 
2015). The EMB algorithm is known to be computationally efficient. 
 
5. Assessing the superiority among the different multiple imputation algorithms is beyond the scope 
of the current study. Suffice it to say that, if the underlying distribution can be approximated by a 
multivariate normal distribution with the MAR condition, all of the three algorithms essentially give the 
same answers (Takahashi, 2014). As for the performance of the EMB algorithm, Honaker & King (2010) 
contend that the estimates of population parameters in bootstrap resamples can be appropriately used 
instead of random draws from the posterior. In fact, Rubin (1987) argues that the approximately Bayesian 
bootstrap method is proper imputation because it incorporates between-imputation variability. Also, Little 
& Rubin (2002) assure that the substitution of Maximum Likelihood Estimates (MLEs) from bootstrap 
resamples is proper because the MLEs from the bootstrap resamples are asymptotically identical to a 
sample drawn from the posterior distribution. Therefore, multiple imputation by the EMB algorithm can 
be considered to be proper imputation in Rubin’s sense (1987).  
 
6. Also, according to van Buuren (2012), the bootstrap method is computationally efficient because 
there is no need to make a draw from the 𝜒2 distribution, unlike the other traditional algorithms of multiple 
imputation. This means that it is not necessary to resort to the Cholesky decomposition (a.k.a. the Cholesky 
factorization), the property of which is that if A is a symmetric positive definite matrix, i.e., 𝐀 = 𝐀𝐓, then 
there is a matrix L such that 𝐀 = 𝐋𝐋𝐓, which means that 𝐀 can be factored into 𝐋𝐋𝐓, where L is a lower 
triangular matrix with positive diagonal elements (Leon, 2006). 
 
7. Nonetheless, R-Package Amelia II does not allow us to estimate the ratio imputation model. In 
fact, none of the existing multiple imputation software programs mentioned above has an option to perform 
multiple ratio imputation. This paper contributes to the literature by applying the EMB algorithm to ratio 
imputation; thus, the new multiple ratio imputation is born. 
 
IV. Single Ratio Imputation 
 
8. Suppose that the population model is equation (1), where the ratio 𝑌̅1 𝑌̅2⁄  is generally a consistent 
but biased estimator of 𝜔, except for some special cases, and the mean of 𝜀𝑖 is 0 with unknown variance. 
However, as the sample size increases, this bias tends to be negligible. Also, the distribution of the ratio 
estimate is known to be asymptotically normal (Cochran, 1977, p.153). 
 

𝑌𝑖1 = 𝜔𝑌𝑖2 + 𝜀𝑖                                                                      (1) 
 
9. Under the following special case, the ratio estimator is unbiased, where 𝜀𝑖 is independent of 𝑌𝑖2 
with the mean of 0 and the unknown variance of 𝑌𝑖2𝜎2 (Cochran, 1977, p.158; Shao, 2000, p.79; Liang et 
al., 2008, p.2). 
 
10. Ratio imputation takes the form of a simple regression model without an intercept, in which the 
slope coefficient is calculated by the ratio between the means of two variables (de Waal et al., 2011). In 
other words, the ratio imputation model is equation (2), where 𝜔̂ = 𝑌̅1,𝑜𝑏𝑠 𝑌̅2,𝑜𝑏𝑠⁄ . Also, by adding a 
disturbance term, ratio imputation can be made stochastic as in equation (3) (Hu et al., 2001). 
 

𝑌̂𝑖1 = 𝜔̂𝑌𝑖2                                                                              (2) 
𝑌̂𝑖1 = 𝜔̂𝑌𝑖2 + 𝑢̂𝑖                                                                     (3) 
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V. Theory of Multiple Ratio Imputation 
 
11. As the literature has demonstrated, if the missing mechanism is MAR, imputation can ameliorate 
the bias due to missingness (Little & Rubin, 2002; de Waal et al., 2011). Caution is that imputed values are 
not the complete reproduction of the true values, and that the goal of imputation is generally not to replicate 
the truth for each missing value, but to make it possible to have a valid statistical inference. For this purpose, 
it is necessary to evaluate the error due to missingness, for which Rubin (1978, 1987) proposed multiple 
imputation as a solution. Indeed, Baraldi & Enders (2010) and Cheema (2014) demonstrate that multiple 
imputation is superior to listwise deletion, mean imputation, and single regression imputation. Furthermore, 
Leite & Beretvas (2010) contend that multiple imputation is robust to violations of continuous variables 
and the normality assumption. Thus, multiple imputation is the gold standard of treating missing data. The 
current study extends the utility of ratio imputation by transforming it to multiple imputation by way of the 
EMB algorithm described in this section. 
 
12. Multiple imputation in theory is to randomly draw several imputed values from the distribution 
of missing data. However, missing data are by definition unobserved; as a result, the true distribution of 
missing data is always unknown. A solution to this problem is to estimate the posterior distribution of 
missing data based on observed data, and to make a random draw of imputed values. As seen in the previous 
section, the value of 𝜔 is estimated by 𝜔̂ = 𝑌̅1,𝑜𝑏𝑠 𝑌̅2,𝑜𝑏𝑠⁄ . Therefore, in order to create multiple ratio 
imputation, the mean vector is what needs to be randomly drawn from the posterior distribution of missing 
data given observed data.  
 
13. Honaker & King (2010) suggested the use of the EMB algorithm for the purpose of drawing the 
mean vector and the variance-covariance matrix from the posterior density. Honaker et al. (2011) presented 
a general-purpose multiple imputation software program called Amelia II, which is a computationally 
efficient and highly reliable multiple imputation program. Nevertheless, as seen above, Amelia II does not 
allow us to estimate the ratio imputation model. Thus, this paper applies the EMB algorithm to ratio 
imputation to create multiple ratio imputation. 
 
14. In the rest of this section, let us review the bootstrap method and the Expectation-Maximization 
(EM) algorithm, in order to illustrate how the EMB algorithm works for the purpose of generating multiple 
ratio imputation. For this purpose, this paper uses the following example data in Table 1. 
 

Table 1. Example Data (Simulated Weekly Income in U.S. Dollars) 
ID Income0 Income1 Income2 
1 543 543 514 
2 272 272 243 
3 797 NA 597 
4 239 239 264 
5 415 415 350 
6 371 371 346 
7 650 NA 545 
8 495 495 475 
9 553 553 564 

10 710 NA 558 
Note. Income0 is the true complete variable. Income1 is the observed incomplete  
Variable at time t with NA = missing. Income2 is the auxiliary variable at t – 1. 

 
A. Nonparametric Bootstrap 
 
15. The first step for multiple ratio imputation is to randomly draw vectors of means from an 
appropriate posterior distribution to account for the estimation uncertainty. The EMB algorithm replaces 
the complex process of random draws from the posterior by nonparametric bootstrapping, which is a 
general resampling method, where samples are taken from the original sample data. The nonparametric 
bootstrap uses the existing sample data (size = n) as the pseudo-population and draws resamples (size = n) 
with replacement M times (Horowitz, 2001). For example, if data 𝑌1, … , 𝑌𝑛  are independently and 
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identically distributed from an unknown distribution 𝐹, this distribution is estimated by 𝐹̂(𝑦), which is 
the empirical distribution 𝐹𝑛 defined in equation (4), where 𝐼(𝑌) is the indicator function of the set 𝑌. 
 

𝐹𝑛(𝑦) =
1
𝑛

∑ 𝐼(𝑌𝑖 ≤ 𝑦)
𝑛

𝑖=1

                                                            (4) 

 
16. Based on equation (4), bootstrap resamples are generated. The distribution 𝐹̂  can be any 
estimator in order to generate the bootstrap resamples of 𝐹 based on 𝑌1, … , 𝑌𝑛. A nonparametric estimator 
of 𝐹 is the empirical distribution 𝐹𝑛 defined by equation (4) (Shao & Tu, 1995; DeGroot & Schervish, 
2002). Table 2 is an example of bootstrap data. 
 

Table 2. Bootstrap Data (M = 2) 
Incomplete Data Bootstrap 1 Bootstrap 2 

Income1 Income2 IncomeB11 IncomeB12 IncomeB21 IncomeB22 
543 514 NA 545 495 475 
272 243 272 243 272 243 
NA 597 239 264 371 346 
239 264 NA 597 415 350 
415 350 272 243 NA 597 
371 346 553 564 543 514 
NA 545 272 243 272 243 
495 475 495 475 NA 545 
553 564 553 564 371 346 
NA 558 272 243 NA 545 

Note. NA represents missing values. 
 
17. When incomplete data are bootstrapped, the chance is that each bootstrap resample is also 
incomplete. Therefore, the information from incomplete bootstrap resamples is biased and inefficient. The 
EM algorithm refines bootstrap estimates in the next section. 
 
B. EM Algorithm 
 
18. The EM algorithm first assumes a certain distribution and tentative starting values for the mean 
and the variance-covariance. Using these starting values, an expected value of model likelihood is 
calculated, the likelihood is maximized, model parameters are estimated that maximize these expected 
values, and then the distribution is updated. The expectation and the maximization steps are repeated until 
the values converge, whose properties are known to be an MLE (Schafer, 1997; Iwasaki, 2002; Do & 
Batzoglou, 2008). Formally, the EM algorithm can be summarized as follows. Starting from an initial value 
𝜃0, repeat the following two steps: 
 

E-step: 𝑄(𝜃|𝜃𝑡) = ∫ 𝑙(𝜃|𝑌) 𝑃(𝑌𝑚𝑖𝑠|𝑌𝑜𝑏𝑠; 𝜃𝑡)𝑑𝑌𝑚𝑖𝑠, where 𝑙(𝜃|𝑌) is log likelihood. 
M-step: Maximize 𝜃𝑡+1 = arg max

𝜃
𝑄(𝜃|𝜃𝑡) with respect to 𝜃. 

Under certain conditions, it is proven that 𝜃𝑡 → 𝜃 (𝑡 → ∞). 
 
19. The values in Table 2 are incomplete. If the EM algorithm is used to refine these values, the EM 
mean for incomeB11 is 405.741 and the EM mean for incomeB12 is 398.100; also, the EM mean for 
incomeB21 is 450.912 and the EM mean for incomeB22 is 420.400. Using these values, the ratio will be 
estimated as 1.019 and 1.072, respectively. Thus, in this small example, the estimated ratio is 1.046 on 
average, ranging from 1.019 to 1.072. This variation captures the estimation uncertainty due to missingness, 
which is called the between-imputation variance (Little & Rubin, 2002). Obviously, real applications 
require a much larger value of M (Graham et al., 2007; Bodner, 2008). 
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C. Application of the EMB Algorithm to Multiple Ratio Imputation 
 
20. The multiple ratio imputation model is defined by equation (5), where tilde means that these 
values are drawn from an appropriate posterior distribution of missing data. In other words, 𝜔̃ is a vector 
of ratios drawn from the appropriate posterior taking estimation uncertainty into account and 𝑢̃𝑖 is the 
disturbance term taking fundamental uncertainty into account (King et al., 2001). 
 

𝑌̃𝑖1 = 𝜔̃𝑌𝑖2 + 𝑢̃𝑖, where                                                                       

𝜔̃ =
𝑌̃̅1

𝑌̃̅2
                                                                                          (5) 

 
21. Table 3 presents the result of multiple ratio imputation, where M = 2, using the same example 
data as in Table 1. The model is 𝐼𝑛𝑐𝑜𝑚𝑒̃ 1 = 𝜔̃ × 𝐼𝑛𝑐𝑜𝑚𝑒2 + 𝑢̃𝑖, where the mean of 𝜔̃ is 1.050 with the 
standard deviation of 0.048, ranging from 0.903 to 1.342 if M = 100. This variation captures the stability 
of the imputation model, which serves as a diagnostic method for imputation, because the simulation 
standard error (essentially, between-imputation variance) can be appropriately used for assessing the 
likeliness of the simulation estimator being close to the true parameter of interest (DeGroot & Schervish, 
2002). Note that, in Table 3, the values of Imputation1 and Imputation2 for ID 3, 7, and 10 change over 
columns Imputation1 to Imputation2, because the values in these rows are imputed values. Also, note that 
the values in the other rows do no change over columns, because these are observed values. 
 

Table 3. Multiple Ratio Imputation Data (M = 2) 
ID Income1 Income2 Imputation1 Imputation2 
1 543 514 543.000 543.000 
2 272 243 272.000 272.000 
3 NA 597 620.917 662.732 
4 239 264 239.000 239.000 
5 415 350 415.000 415.000 
6 371 346 371.000 371.000 
7 NA 545 571.100 600.655 
8 495 475 495.000 495.000 
9 553 564 553.000 553.000 
10 NA 558 597.406 637.115 

 
22. Just as in regular multiple imputation (Little & Rubin, 2002), the estimates by multiple ratio 
imputation can be combined as follows. Let 𝜃𝑚 be an estimate based on the m-th multiply-imputed dataset. 
The combined point estimate 𝜃̅𝑀 is equation (6). The variance of the combined point estimate consists of 
two parts. Let 𝑣𝑚 be the estimate of the variance of 𝜃𝑚, var(𝜃𝑚), let 𝑊̅𝑀 be the average of within-
imputation variance, let 𝐵̅𝑀  be the average of between-imputation variance, and let 𝑇𝑀  be the total 
variance of 𝜃̅𝑀. Then, the total variance of 𝜃̅𝑀 is equation (7), where (1 + 1 𝑀⁄ ) is an adjustment factor 
because M is not infinite. If M is infinite, lim

𝑀→∞
(1 + 1

𝑀
) 𝑣̃𝑀 = 𝑣̃𝑀. In short, the variance of 𝜃̅𝑀 takes into 

account within-imputation variance and between-imputation variance. 
 

𝜃̅𝑀 =
1
𝑀

∑ 𝜃𝑚

𝑀

𝑚=1

                                                                    (6) 

 

𝑇𝑀 = 𝑊̅𝑀 + (1 +
1
𝑀

) 𝐵̅𝑀 =
1
𝑀

∑ 𝑣𝑚

𝑀

𝑚=1

+ (1 +
1
𝑀

) [
1

𝑀 − 1
∑ (𝜃𝑚 − 𝜃̅𝑀)2

𝑀

𝑚=1

]     (7) 
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VI. Monte Carlo Evidence 
 
23. Using a total of the 45,000 simulated datasets with various characteristics, this paper compares 
the Relative Root Mean Square Errors (RRMSE) of the estimators for the mean, the standard deviation, 
and the t-statistics in regression across different missing data handling techniques. The data used in this 
section are a modified version of the simulated data used by King et al. (2001). The Monte Carlo 
experiments here are based on 1,000 iterations, each of which is a random draw from the following 
multivariate normal distribution: Variables y1 and y2 are normally distributed with the mean vector (6, 10) 
and the standard deviation vector (1, 1), where the correlation between y1 and y2 is set to 0.6. Each set of 
these 1,000 data is further repeated for n = 50, n =100, n =200, n =500, and n =1,000; thus, there are 5,000 
datasets of five different data sizes. Our simulated data assume that the population model is equation (8). 
 

𝑌𝑖1 = 𝜔𝑌𝑖2 + 𝜀𝑖, 𝑤ℎ𝑒𝑟𝑒                                                                

𝜔 =
𝑌̅1

𝑌̅2
= 0.6, 𝜀𝑖~𝑁(0, 0.64)                                            (8) 

 
24. Furthermore, each of these 5,000 datasets is made incomplete using the three data generation 
processes of MCAR, MAR, and NI as in Table 4, with the average missing rates of 15%, 25%, and 35%. 
These missing rates approximately cover the range from 10% to 40% missingness. Note that Variable y1 
is the target incomplete variable for imputation, Variable y2 is completely observed in all of the situations 
to be used as the auxiliary variable, and Variable r in Table 4 is 1,000 sets of continuous uniform random 
numbers ranging from 0 to 1 for the missingness mechanism. 
 

Table 4: Missingness Mechanisms and Missing Rates 
 
 
MCAR 

Missingness of y1 is a function of r. 
15%: y1 is missing if r > 0.85. 
25%: y1 is missing if r > 0.75. 
35%: y1 is missing if r > 0.65. 

 
 
MAR 

Missingness of y1 is a function of y2 and r. 
15%: y1 is missing if y2 > 10 and r > 0.7. 
25%: y1 is missing if y2 > 10 and r > 0.5. 
35%: y1 is missing if y2 > 10 and r > 0.3. 

 
 
NI 

Missingness of y1 is a function of y1 and r. 
15%: y1 is missing if y1 > 6 and r > 0.7. 
25%: y1 is missing if y1 > 6 and r > 0.5. 
35%: y1 is missing if y1 > 6 and r > 0.3. 

 
25. Therefore, there is a total of 45,000 datasets, i.e., 1,000 datasets multiplied by five sample sizes, 
three missing mechanisms, and three missing rates. The overall performance can be captured by the Mean 
Square Error (MSE), which is defined as equation (9), where 𝜃 is the truth and 𝜃 is an estimator. The 
MSE measures the dispersion around the true value of the parameter, suggesting that an estimator with the 
smallest MSE is the best of a competing set of estimators (Gujarati, 2003). 
 

𝑀𝑆𝐸(𝜃) = 𝐸(𝜃 − 𝜃)2                                                               (9) 
 
26. Following Di Zio & Guarnera (2013), this study uses the Relative Root Mean Square Error 
(RRMSE), which is defined as equation (10), where 𝜃 is the truth, 𝜃 is an estimator, and T is the number 
of trials. For example, 𝜃 in the following analyses is the mean, the standard deviation, and the t-statistic 
based on complete data. 𝜃 is the estimated quantity based on imputed data. 
 

𝑅𝑅𝑀𝑆𝐸(𝜃) = √
1
𝑇

∑ (
𝜃 − 𝜃

𝜃 )
2𝑇

𝑡=1

                                                  (10) 
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27. In the following analyses, the multiple ratio imputation model sets the number of multiply-
imputed datasets (M) to 100, based on the recent findings in the multiple imputation literature (Graham et 
al., 2007; Bodner, 2008). 
 
VII. Summary of the Monte Carlo Results 
 
A. RRMSE Comparison of the Mean 
 
28. The standard recommendation (de Waal et al., 2011) is that if the goal is to calculate a point 
estimate, the choice is deterministic single ratio imputation. Thus, the main purpose of this comparison is 
to show that the performance of multiple ratio imputation is as good as that of deterministic single ratio 
imputation, which is known to be a preferred method for the estimation of the mean. If multiple ratio 
imputation equally performs well compared to deterministic single ratio imputation, this means that 
multiple ratio imputation attains the highest performance in estimating the mean. 
 
29. In all of the 45 patterns, deterministic ratio imputation and multiple imputation both outperform 
listwise deletion. Even when the missing mechanism is MCAR, the results by imputation are always better 
than those of listwise deletion. Between the ratio imputation methods, deterministic ratio imputation 
slightly performs better than multiple ratio imputation in 32 out of the 45 patterns with 13 ties. However, 
43 out of the 45 patterns are within a 0.01-point difference in terms of the RRMSE. Thus, there are no 
significant differences between deterministic ratio imputation and multiple ratio imputation. 
 
30. Furthermore, this difference is expected to disappear as M approaches infinity. In general, under 
the situations where the model is correctly specified and the assumption of MAR is satisfied, both single 
imputation and multiple imputation (M = ∞) would be unbiased and agree on the point estimation 
(Donders et al., 2006). The results in the Monte Carlo experiments assure that this general relationship also 
applies to the relationship between single ratio imputation and multiple ratio imputation. Therefore, on 
average, multiple ratio imputation can be expected to give essentially the same answers as to the estimation 
of the mean, compared to deterministic ratio imputation. 
 
B. RRMSE Comparison of the Standard Deviation 
 
31. The standard recommendation (de Waal et al., 2011) is that if the goal is to estimate the variation 
of data, the choice is stochastic single ratio imputation. Thus, the main purpose of this comparison is to 
show that the performance of multiple ratio imputation is as good as that of stochastic ratio imputation, 
which is known to be a preferred method to estimate the standard deviation. 
 
32. In all of the 45 patterns, multiple ratio imputation always outperforms listwise deletion. Even 
when the missing mechanism is MCAR, the results by multiple ratio imputation are always better than 
those of listwise deletion. In contrast, stochastic ratio imputation outperforms listwise deletion in only 20 
out of the 45 patterns. Especially, when the missing mechanism is MCAR, listwise deletion often 
outperforms stochastic ratio imputation in 14 out of the 15 patterns, although the difference is minimal. 
This implies that when missing data are suspected to be MCAR, there is a chance that using stochastic ratio 
imputation may make the situation worse than simply using listwise deletion. 
 
33. Between the ratio imputation methods, multiple ratio imputation often performs better than 
stochastic ratio imputation, 43 out of the 45 patterns. Therefore, this study contends that multiple ratio 
imputation is the preferred method for the estimation of the standard deviation. The results in the Monte 
Carlo experiments imply that, regardless of missing mechanisms, multiple ratio imputation should be used 
for the purpose of estimating the standard deviation. 
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C. RRMSE Comparison of the t-Statistics 
 
34. The standard recommendation (van Buuren, 2012; Hughes et al., 2014) is that if the goal is to 
obtain valid inferences with standard errors, the choice is multiple imputation which is a superior variance-
estimation method. Thus, the main purpose of this comparison is to show that the performance of multiple 
ratio imputation is better than that of regular multiple imputation in terms of estimating the t-statistics when 
the true model is equation (8). The comparison of the t-statistics in regression is appropriate, because it is 
the quantity of interest for many applied researchers in disputing whether an independent variable has some 
impact on a dependent variable. 
 
35. When the true model is equation (8), it is expected that multiple ratio imputation is more accurate 
and efficient than regular multiple imputation. The comparison of multiple ratio imputation and Amelia II 
is appropriate, because the algorithm is the same EMB under the same platform of the R statistical 
environment. In all of the 45 patterns, regular multiple imputation and multiple ratio imputation both 
outperform listwise deletion. Furthermore, multiple ratio imputation always outperforms regular multiple 
imputation under the condition where the true population model is equation (8). According to Cheema 
(2014, p.58), comparisons of t and F statistics are fair because the complete sample and the imputed sample 
are identical in all respects including power, except for the fact that no values were missing in the complete 
sample while some values were missing in the imputed values. Therefore, the difference in the observed 
value of statistics are caused by the difference between imputed values and their true counterparts. 
 
36. Therefore, multiple ratio imputation adds an important option for the tool kit of imputing and 
analyzing the mean, the standard deviation, and the t-statistics. If the true model is equation (8), multiple 
ratio imputation is at least as good as and in many cases better than the other traditional imputation methods 
for the three quantities of interest, regardless of the missingness mechanisms. To be fair, this paper never 
claims that multiple ratio imputation is always superior to regular multiple imputation. If the true model is 
not equation (8), the superiority shown in this section is not guaranteed. 
 
VIII. Empirical Example 
 
37. This section presents a small example that demonstrates how switching from the existing methods 
can change substantive conclusions. Note that the results presented in this section are analyzed by the 
National Statistics Center of Japan, using the dataset of the 2012 Japanese Economic Census for Business 
Activity (Statistics Bureau of Japan, 2012). Also note that the views and opinions expressed in the analysis 
using this dataset are the author’s own, not necessarily those of the institution. The data in this section focus 
on the case of Division I (Wholesale and Retail Trade) in the prefecture of Tokyo. The target variable for 
imputation is turnover, and the quantity of interest is the mean of turnover. Variable cost is used as a proxy 
variable for turnover, because turnover is expected to increase proportionately to cost. Using the number 
of employees, the units are classified in this study; in other words, our data focus on the establishments and 
enterprises with the number of employees equal to 1. For comparisons, this section has the following two 
models. Equation (11) is deterministic single ratio imputation, and equation (12) is multiple ratio 
imputation. 
 

𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟̂ 𝑖 = 𝜔̂𝐶𝑜𝑠𝑡𝑖                                                                        (11) 
𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟̃ 𝑖 = 𝜔̃𝐶𝑜𝑠𝑡𝑖 + 𝑢̃𝑖                                                               (12) 

 
38. Table 5 presents the result of analysis. The listwise deletion estimate is 3569.12. In contrast, the 
point estimate by deterministic ratio imputation is 3526.73. The listwise deletion estimate is 1.012 times as 
large as the estimate by deterministic ratio imputation. The point estimate by multiple ratio imputation is 
3526.69, and it is 1.000 times as large as the estimate by deterministic ratio imputation. Although the point 
estimates are almost equal between single and multiple ratio imputation, the multiple ratio imputation 
model has an additional row for BISD (4.74). With this information, the imputer/analyst is approximately 
95% confident that the true mean value of complete turnover is somewhere between 3517.21 and 3536.16, 
after taking the error due to missingness into account. In fact, the imputer/analyst can be confident that the 
estimate by ratio imputation (3526.7) is meaningfully different from the listwise deletion estimate (3569.1) 
which is outside the confidence interval, a finding unascertainable with the traditional single ratio 
imputation method. 
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Table 5. Mean of Turnover (Division I) 

 Listwise 
Deletion 

Deterministic 
Ratio Imputation 

Multiple 
Ratio Imputation 

Mean 3569.12 3526.73 3526.69 
BISD NA NA 4.74 
CI (95%) NA NA 3517.21, 3536.16 

Note. NA means Not-Applicable. M = 100 for multiple ratio imputation. 
The number of observations is 3,811. Units are a million yen. 

 
39. Apparently, the difference between the listwise deletion estimate and the estimate by ratio 
imputation looks small; however, note that the unit is a million yen, which is approximately 8,000 U.S. 
dollars ($1 = 125 yen). Furthermore, this is the mean among 3,811 establishments and enterprises. 
Therefore, the difference in the total amount of turnover between the two estimates is 161.55 billion yen, 
or $1.29 billion, which is quite large. 
 
IX. Conclusion 
 
40. This paper proposed a novel application of the EMB algorithm to ratio imputation, and presented 
the mechanism and the usefulness of multiple ratio imputation. For this purpose, Monte Carlo simulation 
was applied to the newly-developed R-function for multiple ratio imputation. An application to the 2012 
Japanese Economic Census data was also presented to illustrate the usefulness of multiple ratio imputation. 
This research showed that the fit of multiple ratio imputation was at least as good as or in many cases better 
than that of single ratio imputation and regular multiple imputation if the assumption holds. Specifically, 
for the purpose of estimating the mean, the performance of deterministic ratio imputation and multiple ratio 
imputation are essentially identical, with multiple ratio imputation having additional information on 
estimation uncertainty. In order to estimate the standard deviation, multiple ratio imputation outperforms 
stochastic ratio imputation. If the goal is to estimate the t-statistics in regression, multiple ratio imputation 
clearly outperforms regular multiple imputation when the assumptions of the ratio model are satisfied. 
These findings are important because researchers are recommended to use different ways of imputation, 
depending on the type of statistical analyses, meaning that there are no one-size-fit-for-all imputation 
methods (Poston & Conde, 2014). Thus, multiple ratio imputation will be a valuable addition for treating 
missing data problems, which will expand the choice of missing data treatments. 
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