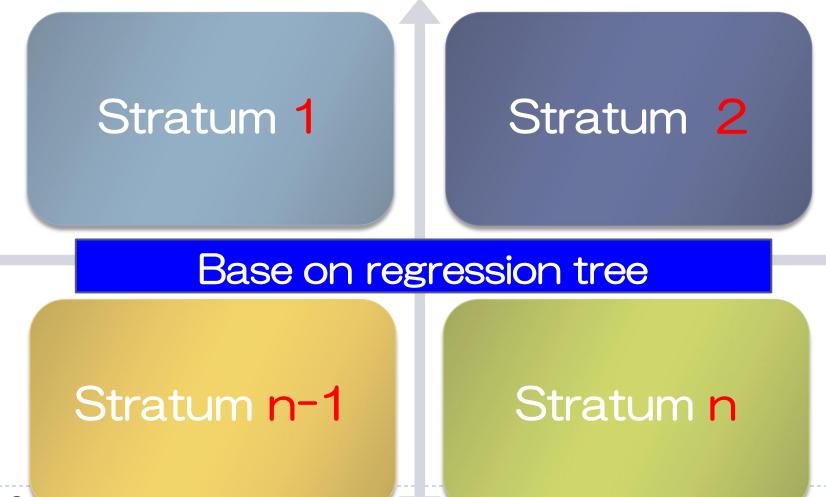


Multi-Stratification for Outlier Detection based on the Graphical Model : Evaluation by Chow Test and AIC

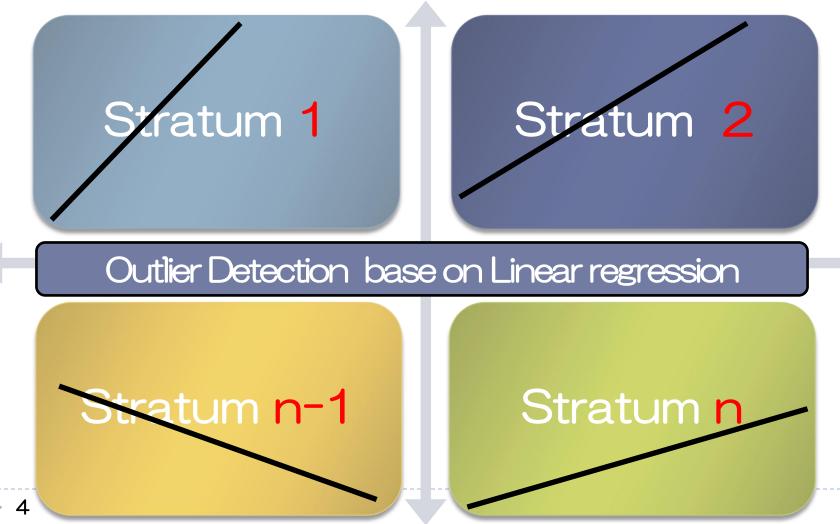
Dr. Kiyomi Shirakawa, National Statistics Center, Tokyo, JAPAN

e-mail: kshirakawa@nstac.go.jp


Table of contents

- 1. Purpose
- 2. Background
- Verification Procedures
- 3. Data Analysis by Regression Tree
- 4. Evaluation of Boundary Value by Chow Test
- 5. Evaluation of Linear Regression Analysis for Chow Test by AIC
- 6. Conclusion

1. Purpose


Multi-Stratification for Outlier Detection

1. Purpose

Multi-Stratification for Outlier Detection

Cost of

Sales

1.1 Relationship of each variable

Profit and Loss Statement

Dependent variable

Sales (Incomes)

Explanatory variable Gross Profit

Operating Profit Selling, General and Administrative

Expenses

Wages and Salaries

Expenses = Sales - (Cost of Sales + SGA)

R

a

t

Ο

1.2 Accounting items(Ratio), Tabulation of Enterprises

ltem		Wholesale and Retail Trade	Manufacturing
Sales (Income)		<u>100.0</u>	<u>100.0</u>
Expenses	*2	97.2	96.1
Cost of sales		78.9	77.7
Gross profit	*3	21.1	22.3
SGA	*1	18.3	18.4
Operating profit	*4	2.8	3.9
Total wages and sa	alaries	7.1	11.1

Data source: the 2012 Economic Census for Business Activity, Tabulation of Enterprises Table 8 in the preliminary summary, Statistics Bureau of Japan

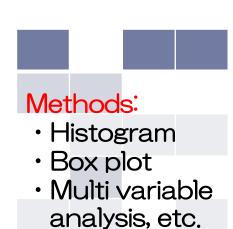
- *1 SGA: Selling and Generally Administrative expenses
- *2 Expenses = Sales (Cost of sales + SGA)
- *3 Gross profit = Expense Cost of sales
- *4 Operating profit = Gross profit SGA

1.3 Correlation coefficient

Correlation coefficient for the Sales is also as high as 0.9 or more.

	Sales (Income)	Expenses	Cost of Sales	Gross profit	SGA	Operating profit	TWS	
Sales (Income)	1.000							
Expenses	1.000	1.000						
Cost of sales	0.999	0.999	1.000					
Gross profit	0.988	0.987	0.981	1.000				
SGA	0.990	0.989	0.983	0.999	1.000			
Operating profit	0.953	0.950	0.943	0.979	0.970	1.000		
TWS	0.950	0.948	0.943	0.960	0.955	0.961	1.000	
SGA: Selling and Generally Administrative expenses								

TWS: Total Wages and Salaries


2 Background


The 2012 Economic Census for Business Activity was held in Japan.

Targets:

Establishments in some of the Industries, Items:

Sales in accounting

All establishments, Main accounting items

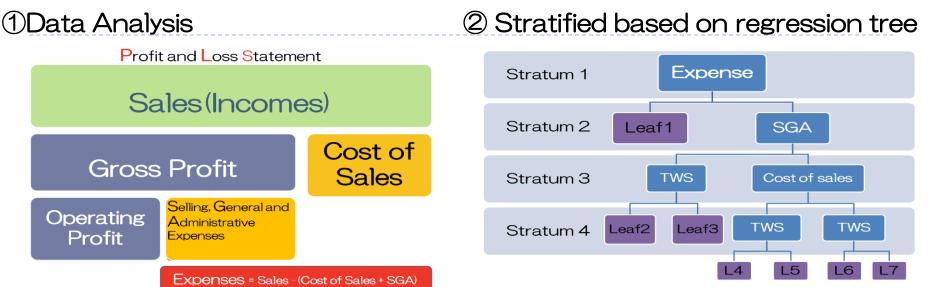
It is possible to extraction of optimal boundary value in each stratification

Kind of histogram analysis : Evaluation for each method based on the AIC

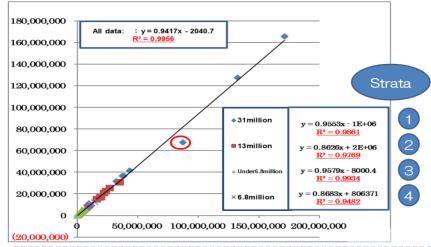
Sample size	10	20	30	50	100	200	500	1000	
Minimum		17.879				16.961	15.714	14.937	
Maximum	24.699	23.699	25.359	23.770	26.153	27.659	26.347	27.383	
Sample mean	20.657	21.021	21.296	20.227	21.217	21.024	21.034	20.980	
USSD *1	3.273	1.590	1.676	1.628	1.929	2.025	1.927	2.021	
IQR	3.430	2.299	1.755	2.330	2.719	3.087	2.865	2.793	
(i) Sturges' for	mula								
Num. of bins	4	5	6	7	8	9	10	11	
AIC	40.04	<u>99,51</u>	<u>168.76</u>	<u>322,31</u>	<u>757.99</u>	<u>1,764.22</u>	<u>5,275.23</u>	-	
(ii) Scott's nor	mal ref	erence	rule						
Num. of bins	2	3	4	5	7	9	13	18	
AIC	<u>34.85</u>	<u>95.02</u>	<u>164.66</u>	<u>318,86</u>	<u>761.87</u>	1,774.81	5,303.48	11,943.10	
(iii) Freedman-Diaconis' choice									
Num. of bins	4	4	7	6	8	11	15	23	
AIC	42.92	99.55	177.62	323.63	767.23	1,782.76	5,315.59	11,972.54	

*1 USSD: Uncorrected sample standard deviation

9


Verification Procedures

3. Data Analysis by Regression Tree


4. Evaluation of Boundary value by Chow Test

5. Evaluation of Linear Regression Analysis for Chow Test by AIC

Illustrate of Verification Procedures

3 Evaluation of Boundary value

(4) Linear Regression Analysis

Coefficient	(Intercept)	Expense	Cost of sales	SGA	TWS	df	AIC
lm All	4605.5	1.021	-0.026	0.236	-0.060	6	<u>18,917.4</u>
lm 1	-1679.7		1.042	0.346	2.075	5	22,158.6
lm 2	-12023.5		1.083		2.457	4	22,167.0
lm 3	146400.0		1.023	1.263		4	22,293.6
lm 4	267900.0		1.296			3	22,489.0

National

NSTAC

Statistics Center

Data Analysis

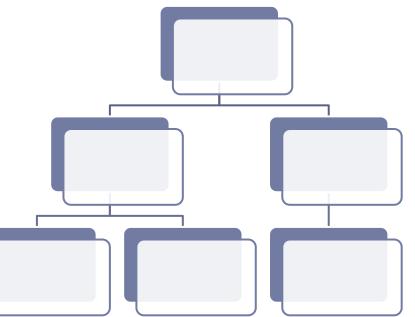
1.Data set

- The 2012 Economic Census for Business Activity, Tabulation of Enterprises Table8 in the preliminary summary
- Dependent variable : Sales (Income)
- Explanatory variable : Expenses, so on
- 2.Method
 - The introduction of Regression Tree
 R package of "mvpart"
- 3. Evaluation
 - Boundary value by Chow Test and AIC

List of calculation for histogram by Sturges' formula

	Datas	ection	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
No	Minimum	Maximum	Freq. ratio (Theoretical value)	Cumulative freq.	Freq. (n=721)	Ratio of (3)	Ratio of (2)	(3) × Ln(4)	Ln(3)!	
1	89	17,130,280	0.95907	0.959	70 8	0.982	0.982	-12.9	_	
2	171,30,280	34,260,471	0.04081	1	6	0.008	0.990	-28.7	6.579	
3	34,260,471	51,390,662	0.00012	1	4	0.006	0.996	-20.8	3.178	
4	51,390,662	685,20,853	1.1 E-0 8	1	0	0	0.996	0	0	
5	68,520,853	85,651,044	2.8E-14	1	0	0	0.996	0	0	
6	85,651,044	102,781,235	0	1	0	0	0.996	0	0	
7	102,781,235	119,911,426	0	1	0	0	0.996	0	0	
8	119,911,426	137,041,617	0	1	1	0.001	0.997	-6.58	0	
9	137,041,617	154,171,808	0	1	0	0	0.997	0	0	
10	154,171,808	171,301,999	0	1	1	0.001	0.999	-6.58	0	
	$AIC = (-2) \times (-6.58 - 0) + 2(10 - 1) = 31.16$									

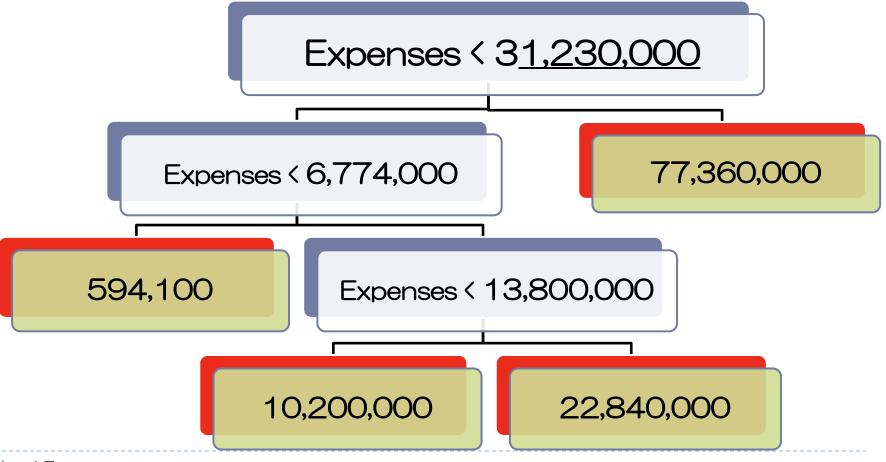
3. Data Analysis by Regression Tree


Tree-based model has various main advantages:

(i) Simple to understand and interpret

 $GI = 1 - \sum_{i=1}^{n} [p(i|t)]^2 GI: Gini index$

(ii) Able to handle both numerical and categorical data
(iii) Uses a white box model and probabilistic graphical model
(iv) Performs well with large datasets

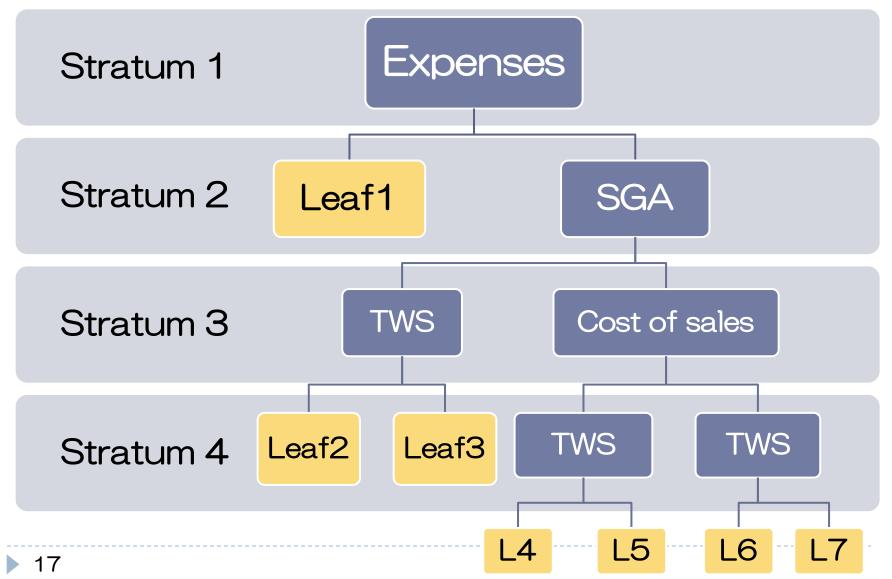

(v) Supervised learning, and prediction

3.1 Result of Analysis

• The Sales is computed by the Expenses in the explanatory variable.

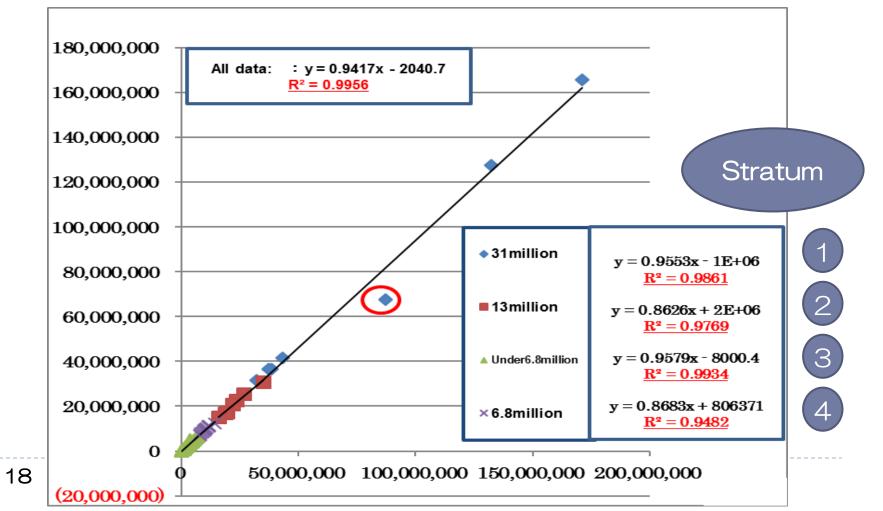
3.2 Analysis Results by Other Variables

(i) When omitted the Expenses:
Node), Split n Deviance Y value
1) root 543 5.643E+16 2,125,002

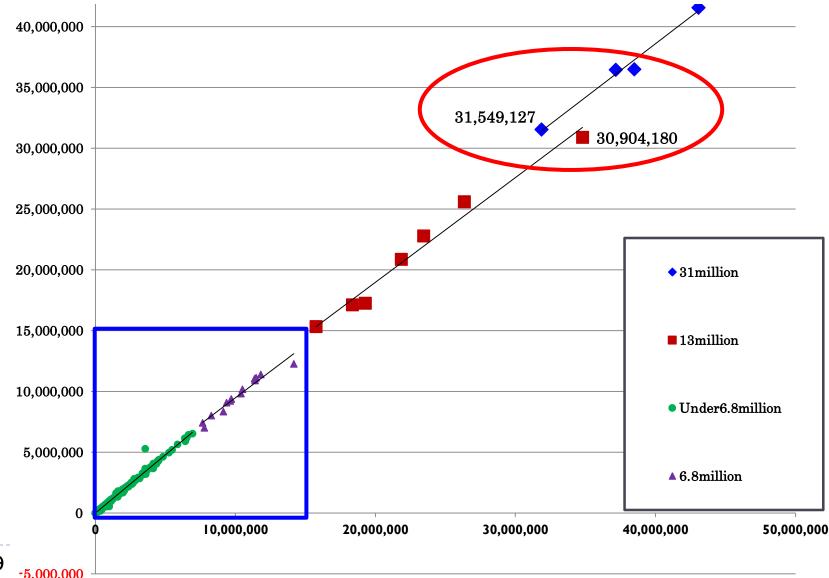

- 2) SGA < <u>4,577,904</u> 536 4.84E+15 1,263,691
 - 4) wages and salaries (784,186.5 510 5.39E+14 735,514 *
 - 5) wages and salaries>=<u>784,186.5</u> 26 1.37E+15 11,624,090 *
- 3) SGA>=<u>4,577,904</u> 7 2.07E+16 68,076,790 *

The SGA and the wages and salaries are effective to split, the sales is divided by three classes.

(ii) When omitted the Expenses and SGA: The Sales is divided four classes.
(iii) When omitted the Expenses, SGA and Cost of sales: The Sales is divided four classes.



3.3 Integrated some analysis results



Evaluation of Boundary Value by Chow Test

Dependent variable is the sales, and explanatory variable is the Expenses.

Evaluation of Boundary Value by Chow Test

19

4.Evaluation of Boundary Value by Chow Test

The Expenses was divided boundary value of under 6.8 million and 6.8 million to 13 million yen by each stratification.

- Result of the Chow Test
 - F = 20.0103, df1 = 2, df2 = 781,
 - P-value = 3.35e-09
 - Evaluation of F value:
 - When $1 \le F \le F \alpha$, P > 0.05 is equal variables,
 - > And F>F α , P < 0.05 is unequal variables.
- P value is under 0.05, therefore, its boundary value is effective.

5. Evaluation of Linear Regression Analysis for Chow Test by AIC

Results of linear regression analysis

Coefficient	(Intercept)	Expenses	Cost of sales	SGA	TWS	df	AIC
lm All	4,605.5	1.021	-0.026	0.236	-0.060	6	<u>18,917.4</u>
lm 1	-1,679.7		1.042	0.346	2.075	5	22,158.6
lm 2	-12,023.5		1.083		2.457	4	22,167.0
lm 3	146,400.0		1.023	1.263		4	22,293.6
lm 4	267,900.0		1.296			З	22,489.0

SGA: Selling and Generally Administrative expenses TWS: Total Wages and Salaries

6 Conclusion

- Achievement of the study
 - 1. Multi-stratification of the Sales based on the regression tree
 - Evaluation
 - 2. Boundary value by Chow Test
 - 3. Linear Regression Analysis for Chow Test by AIC
- Future research is an extension to other economic surveys based on the experience of authentic information in the aggregate the EC2012.

References

[1] Kiyomi Shirakawa, A post-aggregation error record extraction based on naive Bayes for statistics survey enumeration. 59th ISI world Statistics Congress (2013), Hong Kong, China.

http://www.statistics.gov.hk/wsc/CPS004-P4-S.pdf [2] Sturges, H. A. "The choice of a class interval".

(1926). J. American Statistical Association: 65-66.

[3] Scott, David W. (1979). "On optimal and data-based histograms". Biometrika 66 (3): 605-610. doi:10.1093/biomet/66.3.605

 [4] Freedman, David; Diaconis, P. "On the histogram as a density estimator: L2 theory". (1981).Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 57 (4): 453-476. doi:10.1007/BF01025868

- [5] Akaike, H., "Information theory and an extension of the maximum likelihood principle", Proceedings of the 2nd International Symposium on Information Theory, Petrov, B. N., and Caski, F. (eds.), Akadimiai Kiado, Budapest: 267-281 (1973).
- [6]Cristopher. M. Bishop, Pattern Recognition and Machine Learning, Springer, (2006)
- [7] Kiyomi Shirakawa, Teisei deta ni motoduku kigyoukouzou no choukaichi bunseki, Japanese Joint Statistical Meeting, (2013), Osaka .(In Japanese)
- [8] Takayuki Ito, Kiyomi Shirakawa, Keirikoumoku ni motoduku kigyou no kouzouka bunseki: Kouzou no kyoukaichi kentei, Japanese Joint Statistical Meeting, (2013), Osaka .(In Japanese)
- [9] Kiyomi Shirakawa, Keizai sensasu kisochousa shukeikekka ni motoduku kigyou group ni kansuru kousatsu, Japanese Joint Statistical Meeting, (2012), Hokkaido. (In Japanese)

- [10] Masato, Okamoto. "Tahenryo Hazurechi kenshutsu no kenkyu douko oyobi Canada oroshiuri kourigyochosa ni okeru tahenryo hazurechi kenshutsuho ", Seihyo gijyutsu kenkyu report 1, National Statistics Center. (2004) (Nondisclosure) (In Japanese)
- [11] Gordon S. Linoff, Michael J. A. Berry, Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, Wiley, (2011)
- [12] G.V. Kass, An exploratory technique for investigating large quantities of categorical data, Applied Statistics, Vol. 29, No.2.(1980), PP. 119-127.
- [14] Dawid, A. Philip. "Conditional independence in statistical theory." Journal of the Royal Statistical Society. Series B (Methodological) (1979): 1-31.

Thank you very much for your attention.

e-mail: kshirakawa@nstac.go.jp