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I. Introduction  
 

1. The automatic data editing process is typically divided into two steps. The first step is error 

localization, where errors in the dataset are identified by some error detection methods. The second step 

is imputation, where errors are corrected by some imputation methods. The aim in this project is to 

propose a way to automate part of the editing process for the Japanese economic surveys. To attain this 

goal, we use the dataset of the Economic Census for Business Activity, which was conducted for the first 

time in Japanese history in February 2012. First, we contaminate the dataset by artificial errors. Next, in 

the error localization step, we apply R package SeleMix to detect the errors in the dataset. Then, in the 

error correction step, we employ the three competing multiple imputation algorithms, which are Markov 

chain Monte Carlo (MCMC), Fully Conditional Specification (FCS), and Expectation-Maximization with 

Bootstrapping (EMB). For this purpose, we use R packages Norm (MCMC), Mice (FCS), and Amelia II 

(EMB). Finally, we compare the performance of the error correction by these three algorithms against the 

true values in the dataset.  

 

2. By way of organization, Section II discusses automatic editing. Section III explains how error is 

localized by SeleMix. Section IV introduces the competing multiple imputation software programs. 

Section V analyzes the dataset of the Economic Census for Business Activity by SeleMix, Amelia, Mice, 

and Norm. Section VI concludes. 

 

II. Automatic Editing 
 

3. The automation of the statistical data editing process involves two steps: (1) Error localization 

step; (2) error correction step. First, error is localized by some error detection techniques, where 

erroneous cells are identified. Next, error is corrected by some imputation techniques, where erroneous 

values are deleted and imputed (de Waal et al., 2011). 

 

4. There are several ways to localize random errors, such as statistical models, deterministic 

checking rules, and solution to a mathematical optimization problem. Statistical methods are further 

divided into outlier detection techniques and neural networks (de Waal et al, 2011). As Section III shows, 

this paper focuses on an outlier detection technique as an error localization method. There are also a 

variety of imputation techniques, but Takahashi and Ito (2012) showed the superiority of multiple 

imputation; thus, this paper focuses on multiple imputation as an error correction method. 

  

                                                      
1 The views and opinions expressed in this paper are the author’s own, not necessarily those of the institution. 



 2 

III. Error Localization: Selective Editing Using SeleMix 
 

A. Contaminated Normal Distribution 
 

5. Generally, a contaminated normal model with two peaks can be described by equation (1). In 

other words, variable x has a contaminated normal distribution if its distribution is composed of the 

following two parts: one is the normal distribution with mean   and variance    which is generated by 

probability  ; and the other part is some probability density function      which is generated by 

probability    . 

 

                     
 

   
                               

 

6. If the variance of the distribution contaminated by the p.d.f.      is larger than   , or the mean is 

completely different from  , the observations obtained from the contaminated distribution are likely to be 

different from other observations; thus, they can be considered outliers (DeGroot and Schervish, 2002). 

For more detailed discussions on the contaminated normal model, see Buglielli et al. (2010), Guarnera et 

al. (2012), and Di Zio and Guarnera (2013). 

 

B. R-Package SeleMix 
 

7. The model used in SeleMix pays a particular attention to random errors, which detects potentially 

influential outliers. It is a multivariate error model that estimates both the error probability and the 

influence of the error based on the assumption that, by inflating the variance of the error-free data, the 

distribution of the error data can be obtained. For more detailed discussions on SeleMix, see Buglielli et 

al. (2011) and Guarnera and Buglielli (2013). 

 

IV. Error Correction: Competing Algorithms of Multiple Imputation 
 

A. Multiple Imputation in a Nutshell 
 

8. The origin of multiple imputation can be traced back to Rubin (1978), the basics of which are as 

follows (Rubin, 1987; King et al., 2001; Takahashi and Ito, 2013). Multiple imputation substitutes 

missing values by M simulated values, where M is greater than 1. In order to attain this goal, we construct 

a posterior distribution of the missing data, conditional on the observed data, from which M simulated 

values are randomly drawn; thus, M multiply-imputed datasets are created, which reflect the uncertainty 

associated with imputation. We use each of these M multiply-imputed datasets separately for the purpose 

of statistical analyses. Then, we combine the results of the M statistical analyses to calculate a point 

estimate. The steps in multiple imputation (M = 5) are graphically shown in Figure 4.1. 

 

 

 
 

9. Here are the notations used in this paper. Let us define   as an     dataset, where   is the 

sample size and   is the number of variables. Under the conditions where   has no missing values,   is 

Figure 4.1: Schematic Overview of Multiple Imputation 
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normally distributed with mean vector   and variance-covariance matrix  . In other words,          . 

In our notation, i refers to observation index, where i ranges from 1 to n. Also, j refers to variable index, 

where j ranges from 1 to p. Let us further define   as          , where    is the j-th column in D and     

is the complement of   , i.e., all columns in D except   . R is defined as a response indicator matrix, 

where R has the same dimension as D. If D is observed, R takes the value of 1; if not, R takes the value of 

0. Finally,      is the observed part of data and      is the missing part of data:              . 
 

10. The assumption of multivariate normality implies that missing values are linearly modelled. 

Suppose that     is missing and that       includes all of the observations in row i except variable   . Then, 

the imputation model is defined as equation (2), where      is a simulated value for a missing value, i.e., 

an imputed value. Here, ~ means random sampling from an appropriate posterior distribution,   is a 

regression coefficient, and   stands for fundamental uncertainty. 

 

                                              
 

11. In order to calculate regression coefficients, we need to know the mean, variance, and covariance. 

Fortunately, all of the necessary information can be found in   and  . Were   and   fully known, the 

value of the true regression coefficient   would be deterministically based on   . If so, the imputation of 

missing values would be also deterministic. In this case, the likelihood function of complete data would 

be equation (3). 

 

                   

 

   

                                

 

12. Unfortunately, almost no datasets are perfectly observed, i.e. some values are missing. Assuming 

that the mechanism of missingness is missing at random (MAR),
2
 we form the likelihood of observed 

data     . Let        an observed value of row i in  ,  
     

 a subvector of  , and        a submatrix of  . 

Since the marginal densities are normal, the likelihood function of observed data      is equation (4). 

 

                                    

 

   

                       

 

13. The fact that   and   are not fully known means that it is not possible to know   with certainty. 

Unlike    (ordinary least squares estimate of  ),    in equation (2) implies that estimation is uncertain. 

However, as Allison (2002) pointed out, the computation of equation (4) is not easy based on the 

traditional methods. Furthermore, it is not easy to randomly draw   and   from this posterior distribution. 

In order to solve this problem, various computational algorithms have been proposed in the literature, 

which we will explain in the next section. 

 

B. Markov chain Monte Carlo (MCMC): R-Package Norm 
 

14. Rubin’s version of multiple imputation is based on Markov chain Monte Carlo (MCMC), which 

is the well-known Bayesian computational algorithm (Rubin, 1987; Schafer, 1997). As an MCMC 

computational technique, data augmentation is often used, where imputations are generated from the 

conditional distribution of missing values (imputation step) and parameter values are generated from the 

posterior distribution (posterior step), and these two steps are repeated until convergence is attained 

(Schafer, 1997; Little and Rubin, 2002; Gill, 2008).
3
 In terms of computer software programs, this 

algorithm is also known as joint modeling (JM), where we draw imputations from the conditional 

                                                      
2 About the three assumptions of missingness, see Little and Rubin (2002). Specifically, Missing Completely At Random 

(MCAR) means            . Missing At Random (MAR) means                 . NonIgnorable (NI) means that 

       cannot be simplified and R is not independent of D. 
3 For more detailed information about MCMC, see Takahashi and Ito (2013). 
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distribution of the multivariate distribution for the missing data (van Buuren and Groothuis-Oudshoorn, 

2011). R Package Norm 3.0.0 is an example of the software using this algorithm (Schafer, 2008).
4
 

 

15. Norm was developed by Joseph L. Schafer (1997, 2008) of the Pennsylvania State University. 

Schafer is Rubin’s disciple,
5
 and we can say that Norm authentically implements Rubin’s original 

multiple imputation. In order to conduct multiple imputation via MCMC, we first need to set the initial 

value. In Norm, we use the emNorm function, which creates the estimates based on the Expectation-

Maximization (EM) algorithm. Also, note that multiple imputation utilizes random numbers, so that there 

is a need to set the seed by using the set.seed function for reproducibility. 

 
emResult<-emNorm(data) 

set.seed(1223) 

 

16. mcmcNorm is the function to perform multiple imputation by MCMC. The right-hand side of 

iter= is the repetition number of a Markov chain. The right-hand side of impute.every saves the 

data for the designated numbers among the above repetitions. The following example saves every 1,000 

data among the 5,000 repetitions, so that 5000 / 1000 = 5 multiply-imputed datasets are created (M = 5). 

The summary function returns the results. 

 
mcmcResult<-mcmcNorm(emResult, iter=5000, impute.every=1000)  

summary(mcmcResult) 

 

17. The results of multiple imputation are saved as mcmcResult$imp.list[[#]][,#], where 

[#] stands for the m-th imputation and [,#] stands for a variable number. In other words, the imputation 

from m = 2 for the variable in the third column is saved as mcmcResult$imp.list[[2]][,3]. In 

order to see the mean, we use the mean function, and in order to see the standard deviation, we use the 

sd function, as below. Also, if we want to use regression analysis, we simply use the lm function as 

below. After repeating these processes M times, simply combine the results using Rubin’s rule 

(Takahashi and Ito, 2012). 

 
mean(mcmcResult$imp.list[[#]][,#]) 

sd(mcmcResult$imp.list[[#]][,#]) 

summary(lm(mcmcResult$imp.list[[#]][,#]~mcmcResult$imp.list[[#]][,#]+m

cmcResult$imp.list[[#]][,#])) 

 

C. Fully Conditional Specification (FCS): R-Package Mice 
 

18. Fully Conditional Specification (FCS) is one of the most prominent competing algorithms against 

MCMC. In FCS, imputation is on a variable-by-variable basis, which means that each incomplete 

variable has its imputation model, under which missing values are iteratively imputed for each variable 

(van Buuren, 2012).
6
 Theoretically, FCS is superior to JM in that it is possible to impute missing values 

even if we cannot prespecify an appropriate multivariate distribution. R Package MICE is an example of 

the software using the FCS algorithm (van Buuren and Groothuis-Oudshoorn, 2011). 

 

19. MICE was developed by Stef van Buuren (2012) at Utrecht University in the Netherlands, which 

stands for Multivariate Imputation by Chained Equations. It is an incredibly flexible multiple imputation 

program. mice is the function for multiple imputation, where data is the name of the dataset to 

multiply-impute, the right-hand side of m = is the number of multiply-imputed datasets, the right-hand 

side of seed = is to set the seed, and meth = “norm” means that the imputation model is a 

Bayesian linear model (van Buuren and Groothuis-Oudshoom, 2011). 

 
imp<-mice(data, m = #, seed = #, meth="norm") 

 

                                                      
4 Note that Norm 3.0.0 works only in R 2.9.2 or before. 
5 Joseph L. Schafer obtained his Ph.D. in statistics with Donald B. Rubin as his advisor at Harvard University (Schafer, 1992). 
6 For more detailed information about FCS, see Takahashi and Ito (2013). 
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20. The imputed datasets created above are saved as imp, and we can conduct regression analysis 

using the with function. The pool function combines the results. 

 
fit<-with(imp,lm(variable1~variable2+variable3)) 

summary(pool(fit)) 

 

21. Also, if we want to save the multiply-imputed datasets as a csv file, simply do as follows. 

 
dataimp<-complete(imp, action="broad", include=FALSE) 

dataimpdf<-data.frame(dataimp) 

write.csv(dataimpdf,"micedata.csv") 

 

D. Expectation-Maximization with Bootstrapping (EMB): R-Package Amelia 
 

22. The Expectation-Maximization with Bootstrapping (EMB) is another competing multiple 

imputation algorithm, which is the combination of the traditional expectation-maximization and the non-

parametric bootstrapping. In the EMB algorithm, the non-parametric bootstrapping method is used for 

estimation uncertainties by acquiring bootstrap subsamples of size n, which are randomly drawn from the 

incomplete dataset M times. After that, in each of these M bootstrap subsamples, the EM algorithm 

calculates M point estimates of   and  , based on which M point estimates of    will be calculated for 

imputation (Congdon, 2006; Honaker and King, 2010).
7
 Unlike MCMC and FCS, the EMB algorithm can 

avoid the Cholesky decomposition
8
 and can be expected to be computationally efficient (van Buuren, 

2012). R package Amelia II is the software using this algorithm (Honaker, King, and Blackwell, 2011). 

 

23. Amelia was developed by Gary King (2001) of Harvard University, which is expected to be 

computationally efficient.
9
 First, we set the seed by using the set.seed function. After that, we create 

multiple imputation by using the amelia function, where data is the name of the dataset to multiply 

impute and the right-hand side of m= is the number of multiply-imputed datasets. The results of multiple 

imputation are stored in a.out. With the use of the write.amelia function, we can save them as a 

csv file (file name: outdata). 

 
set.seed(#) 

a.out<-amelia(data, m = #) 

write.amelia(obj= a.out, file.stem = "outdata", orig.data = F,separate 

= F) 

 

24. In order for statistical analysis using multiply-imputed datasets, we can use R package Zelig by 

the require function as follows (Imai, King, and Lau, 2008). 

 
require("Zelig") 

z.out<-zelig(variable1~variable2+variable3, data = a.out$imputations, 

model = "ls", cite = F) 

summary(z.out) 

  

                                                      
7 For more detailed information about EMB, see Takahashi and Ito (2012) and Takahashi and Ito (2013). 
8 The Cholesky decomposition is also known as the Cholesky factorization, which is defined as follows. If A is a positive 

symmetric definite matrix, i.e.,     , then there is a matrix H such that       , where H is lower triangular with positive 

diagonal elements (Leon, 2006). 
9  In 2001 when Amelia was first developed, its algorithm was EMis, which stands for Expectation-Maximization with 

Importance Sampling (King et al., 2001). In 2010, it was reborn as Amelia II implemented with EMB for the purpose of 

further computational efficiency (Honaker and King, 2010). 
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V. Analysis Using the Japanese Economic Census 
 

A. The Economic Census for Business Activity 

 

25. The Economic Census in Japan aims to identify the actual conditions of business activities, 

identify the overarching industrial structure, and establish information on the population for a variety of 

statistical surveys for establishments and enterprises. The Economic Census for Business Activity is to 

reveal the economic activities among establishments and enterprises, by gathering information not only 

on the names and locations of establishments and enterprises, but also on various information such as the 

management structure, the number of workers, and the amount of turnover (Statistics Bureau of Japan, 

2012).
 
The Economic Census for Business Activity was conducted in February 2012 for the first time in 

Japanese history. Note that the results presented in this paper are analyzed by the National Statistics 

Center of Japan, using the preliminary dataset of the 2012 Economic Census for Business Activity. Also 

note that the views and opinions expressed in the analysis using this dataset are the author’s own, not 

necessarily those of the institution. 

 

B. Descriptions of Dataset 
 

26. The dataset we used is Division E (Manufacturing in the industrial classification) of the 

Economic Census for Business Activity dataset. The number of complete observations in this dataset is 

198,954. The variables used in this research are turnover, worker, and capital, among which turnover is 

the target variable for editing. Table 5.1 presents summary statistics of raw data. The means and medians 

are different in all of the variables. Also, the distances from the means to the 1
st
 and 3

rd
 quartiles are not 

equal in all of the variables. These facts indicate that they are not normally distributed. 

 

Table 5.1: Summary Statistics (Raw Data) 

 1
st
 Quartile Median Mean 3

rd
 Quartile sd 

Turnover 2425.0 6200.0 28585.5 17840.0 234798.3 

Worker 4.0 7.0 15.4 15.0 36.8 

Capital 300.0 1000.0 1939.0 1000.0 18320.6 
Note: The unit in turnover and capital is million yen. The unit in worker is person. 

 

27. Figure 5.1 presents the histograms of these variables (raw data). In order to see the shapes of the 

histograms, the graphs are zoomed in. Clearly, none of them are normally distributed. 

 

Figure 5.1: Histograms of  Raw Data (Magnified) 

   
 

28. Since all of the variables are heavily skewed, in order to normalize the distributions, we 

transformed them by natural logarithm. Table 5.2 presents summary statistics of the three variables in log 

form. Now, the means and medians are quite similar, and the distances from the means to the 1
st
 and 3

rd
 

quartiles are roughly the same, indicating that the distributions are close to normality. 
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Table 5.2: Summary Statistics (Natural Logarithm) 

 1
st
 Quartile Median Mean 3

rd
 Quartile sd 

Turnover 7.794 8.732 8.822 9.789 1.531 

Worker 1.386 1.946 2.060 2.708 1.052 

Capital 5.704 6.908 6.575 6.908 1.012 

 

29. Figure 5.2 presents the histograms of these variables (log-transformed data). In order to see the 

shapes of the histograms, the graphs are zoomed in. Now, the distributions are approximately symmetric 

around the means. 

 

Figure 5.2: Histograms of Log-Transformed Data (Magnified) 

   
 

C. Descriptions of Contamination (Artificial Errors) 
 

30. Following Di Zio and Guarnera (2013), we contaminated turnover by swapping the first two 

digits of turnover, using the MAR assumption.
10

 The percentage of contamination is about 17.8%, i.e., 

35,395 observations are potentially random errors. However, not all swapping created errors. For 

example, if the original value is 4,485, swapping the first two digits creates 4,485, which is the same as 

the correct value. In this way, it is found that 3,550 are “correct errors,” which are not, in fact, errors. As 

a result, among these 35,395 potential errors, 31,845 are truly errors. Summary statistics of the turnover 

variables are presented in Table 5.3. “Truth” refers to the turnover variable without errors, i.e., the 

original turnover variable in the dataset. “Truth + Error” refers to the contaminated turnover variable, 

which is the target variable in this research. “Truth – Error” refers to the portion of the original turnover 

variable, which was not contaminated. “Error” refers to the portion of the original turnover variable, 

which was contaminated. 

 

Table 5.3: Summary Statistics of Turnover (Raw Data) 

 1
st
 Quartile Median Mean 3

rd
 Quartile sd 

Truth 2425.0 6200.0 28585.5 17840.0 234798.3 

Truth + Error 2800.0 6647.0 28782.5 17920.0 234796.4 

Truth – Error 3824.0 8589.0 34350.5 22600.0 258594.1 

Error 2100.0 6300.0 43681.5 24840.0 400176.1 
Note: The unit in turnover is million yen. 

 

31. Since we know that the variables in the dataset are heavily skewed, we log-transformed these 

turnover variables, whose summary statistics are presented in Table 5.4. 

  

                                                      
10 This means that the probability of error occurrence is set to be high when the number of workers is small, but the probability 

of error occurrence is the same given the same number of workers. It is assumed that if the number of workers is small, the 

enterprise or establishment may not have enough resources (such as manpower) to accurately respond to surveys; thus, errors 

are expected to occur frequently. 
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Table 5.4: Summary Statistics of Turnover (Natural Logarithm) 

 1
st
 Quartile Median Mean 3

rd
 Quartile sd 

Truth 7.794 8.732 8.822 9.789 1.531 

Truth + Error 7.937 8.802 8.798 9.794 1.657 

Truth – Error 8.250 9.060 9.198 10.030 1.360 

Error 7.650 8.748 8.742 10.120 1.943 

 

32. Figure 5.3 presents the histograms of the turnover variables in natural logarithm. We can see that 

the effects of contamination are noticeable in the left side and the center of the distributions (circled in 

red). 

 

Figure 5.3: Histograms of Turnover (Natural Logarithm) 

  
 

D. Results of Automatic Editing 
 

33. R package SeleMix detected 30,250 observations as outliers. Among these 30,250 outliers, 

15,914 are the errors that were introduced above. In order to detect influential outliers, we set t.sel=0.001; 

as a result, 15,150 outliers are identified as influential. Among these 15,150 influential outliers, 10,067 

are the errors that were introduced above. Suppose that we manually inspected these 15,150 influential 

outliers to see which of them are actually errors. Then, we delete these 10,067 errors and impute them by 

multiple imputation. As multiple imputation programs, we use R packages Amelia, Mice, and Norm, 

which were described in Section IV. The number of multiply-imputed datasets (M) is set to 20. 

 

34. Table 5.5 presents the results of regression analyses of turnover on worker (natural logarithm). In 

other words, the presented results are the intercept and slope followed by their associated standard errors 

in             , where    is log(turnover) and    is log(worker). The inaccuracies in the error model are 

more or less corrected by deleting and multiply-imputing these 10,067 errors. For example, the true slope 

coefficient for logworker is 1.2257, but the error coefficient is 1.2620. The coefficients provided by the 

multiple imputation models are 1.1981 (Amelia) and 1.1980 (Mice). Therefore, the error is reduced by 

about 25%. The associated standard errors are now correctly estimated in the multiple imputation models. 

Among the multiple imputation models, unfortunately, Norm was not able to handle a large dataset; thus, 

its outputs are signified as NA (not applicable). Mice performed slightly better than Amelia, but their 

differences are almost negligible. The time it took to complete multiple imputation was 4 minutes 33 

seconds by Amelia and 8 minutes 29 seconds by Mice. Therefore, Amelia is most computationally 

efficient among the three programs. 

  

Truth Truth with Error 
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 Table5.5: Results of Regression Analyses 

 Truth Error Amelia Mice Norm 

Intercept 6.2980 

(0.0041) 

6.1989 

(0.0049) 

6.3852 

(0.0044) 

6.3854 

(0.0043) 

NA 

 

      

logworker 1.2257 

(0.0018) 

1.2620 

(0.0021) 

1.1981 

(0.0019) 

1.1980 

(0.0018) 

NA 

 

      

n 198,954 198,954 198,954 198,954 188,887 

# of errors 0 31,845 21,778 21,778 21,778 

time   4m33s 8m29s NA 
Note: Reported values are coefficients (standard errors). The dependent variable is logturnover, which is turnover in 

natural logarithm. The independent variable is logworker, which is worker in natural logarithm. The dependent variable 

in the Error model is “Truth + Error” described in paragraph 30. “n” is the number of observations. The # of errors 

refers to the number of errors that remain in each dataset. Time is the time to complete multiple imputation. 

 

35. Figure 5.4 presents the histograms of logturnover, which focuses on the left tails of the 

distributions. Here, we can clearly see that the errors in the tails are straightened out in the imputed 

datasets. 

 

Figure 5.4: Tails of Histograms of Turnover (Natural Logarithm)
11

 

  
  

  
 

  

                                                      
11 There are 19 other histograms for Amelia and Mice, respectively, but they are quite similar to the ones presented here. 

Truth Truth with Error 

Multiple Imputation (by Amelia, m = 1) Multiple Imputation (by Mice, m = 1) 
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VI. Conclusions 
 

36. In this paper, we assessed a potential way to partly automate the editing process of economic 

surveys. For this purpose, we used the dataset of the Economic Census for Business Activity, which was 

the first overarching economic survey in Japanese history. As an error detection tool, we used SeleMix, 

which utilizes the contaminated normal model. As error correction tools, we used several multiple 

imputation programs (Amelia, Mice, and Norm), which are based on the EMB, FCS, and MCMC 

algorithms, respectively.  

 

37. We showed that SeleMix was useful in identifying influential random errors and that multiple 

imputation was effective in correcting these errors. It was also found that, while the accuracy of 

imputation is roughly the same between Amelia and Mice, there is a difference in terms of computational 

efficiency. Specifically, Norm was unable to handle a large dataset (number of observations   200,000) 

while Amelia was quite fast in handling the same dataset. 
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