
Parallel computation of modified Stahel–Donoho

estimators for multivariate outlier detection

WADA, Kazumi

National Statistics Center

Tokyo, JAPAN

kwada@nstac.go.jp

TSUBAKI, Hiroe

The Institute of Statistical Mathematics

Tokyo, JAPAN

tsubaki@ism.ac.jp

Abstract—Modified Stahel–Donoho (MSD) estimators are an

orthogonally equivariant multivariate outlier detection method

with a high breakdown point for all dimensions. An R function of

the MSD estimators is created and its performance is confirmed;

however, the method suffers from the curse of dimensionality and

its implementation is limited to relatively low dimensional

datasets. This paper proposes a parallel computing approach to

cope with higher dimensionality and presents results for a few

datasets to illustrate its use. Code for both the utilized

parallelized function and the original single-core function have
been placed in a public repository for further evaluation.

Keywords—multivariate location and scatter; projection

pursuit; outlier detection; Mahalanobis distance.

I. Objective

The phrase “big data” is a loosely defined term used to
describe datasets so large and complex that they are awkward
to work with using standard statistical software [1]. In the field
of official statistics, survey and census microdata before
aggregation have an usually large volume and are sometimes
not easily processed by statistical software. One example is
the outlier detection process to make a raw dataset clean for
enumeration. Univariate outlier detection methods are
commonly used; however, multivariate detection methods are
not convenient for most national statistical offices, due to the
computational burden. This paper discusses part of the work to
explore and evaluate promising multivariate outlier detection
methods for official survey enumeration.

A comprehensive research project on the editing and
imputation of official statistics named EUREDIT launched in
2000. It was funded by Eurostat and involved professionals of
national statistics offices and academics in the same regions.
Several modern multivariate outlier detection methods were
examined in the project [2]. The results suggest there is no
“best” method, in the sense that no method works best in all
situations [3]. Reference [4] chose the forward search
(BACON-EEM: BEM), the minimization of scale (Fast-MCD),
and the nearest neighbor (NNVE) algorithm among those
examined in [2] and made a comparison with random number
datasets following contaminated normal and long-tailed
distributions. The results favored BEM, as in [2], and also
suggested that nonparametric methods such as the nearest
neighbor algorithm may not be desirable for elliptically

distributed data; nevertheless, survey data often fit an elliptical
model, after transformation, as necessary.

Statistics Canada introduced the modified Stahel–Donoho
(MSD) estimators based on the projection pursuit algorithm
for multivariate outlier detection of the Annual Wholesale and
Retail Trade Survey (AWRTS) according to [5]. The MSD
estimators are a combination of the Stahel–Donoho (SD)
estimators [6] [7], and projection pursuit (PP) [8]. The
estimators achieve orthogonal equivariance and sufficient
robustness owing to their high breakdown point. A few
improvements for MSD are also suggested by [2]. Then an R
function to implement both the method proposed by [5] and
the improved version of [2] was created [9]. We will refer to
the former method as the Canada version and the latter method
as the EUREDIT version.

The EUREDIT version of the MSD estimators and their
algorithm are reviewed in the next section. The major
difference with the Canada version is also briefly explained.
Then the problem with the EUREDIT version for practical
implementations is discussed and a parallelization of the MSD
function is proposed to cope with larger datasets in section III.
In section IV, we compare MSD to BEM and NNVE using
simulation datasets following an asymmetrically contaminated
normal distribution and then demonstrate the performance of
the parallelized MSD with three different datasets. The
problem of tuning the parallelized MSD is also discussed.

II. MSD Estimators

A. Methodology

The SD estimators can be regarded as robust estimators of
the mean vector and the covariance matrix. Data points are
projected onto randomly generated orthogonal bases. Since
multivariate data are translated into one-dimensional data by
projection, the problem is reduced to the estimation of one-
dimensional location and scale in each projection.

Observations of those MAD/|median| ix exceed a certain

threshold are regarded as possible outliers and downweighted,

where MAD stands for median absolute deviation and ix is a

one-dimensional projected data point.

Let X be the n×p data matrix with n observations

),,(1 nxx  and p variables. The superscript T designates a

matrix or vector transpose. Let  and 2 be affine

equivariant univariate estimators of location and scatter. The

outlyingness measure ir of each observation ix is given by

.
)(

|)(|
TT

TTT

1||||

sup
X

X












i
i

x
r

Each ir is a measure of the maximum standardized one-

dimensional deviation from the estimated location  for all

directions in p
R . Then the weights are computed as

)(ii rww  , where  RR:w is a weight function, and the

SD estimators are defined as








n
i i

n
i ii

SD
w

xw
m

1

1 and










n
i i

n
i SDiSDii

SD
w

mxmxw
S

1

1
T))((

.

The finite sample breakdown point was studied when ir is

taken from a random subset of size N of all p
R with

1 and resulted in the following size N to maintain a high

breakdown point and the weight function w [10]:

)/)8023.01328.2xp(truncate(e ppN  , (1)

 
2

95.0,2
/

1
)(,: pcwith

crifrc

crif
rwrw 








  RR .

See [2] and [10] for further details. Table I shows how the
size N increases along with p.

The MSD estimators proposed by [5] use the SD
estimators as the initial robust mean vector and covariance
matrix. These are used for the following principal component
analysis of PP, which regards the principal components as
“interesting” directions to find outliers. Then the Mahalanobis
distance is computed from the final mean vector and
covariance matrix to detect outliers.

B. Algorithm

The following algorithm is the EUREDIT version, i.e., the
algorithm based on [5]. It also incorporates a few
improvements of [2].

1) Let N be the number of orthogonal basis required as

described in the previous subsection. Repeat the following

three steps N times.

a) Obtain the necessary amount of random numbers and

create p-dimensional unit vectors.

b) Make the unit vectors an orthogonal basis

pjj ,,1,  . Project the data onto j . Compute residuals

)1(
ijr and trimmed residuals

)1(~
ijr as follows:

674.0/)mad(

|)med(|

T

TT
)1(

x

xx
r

j

jij
ij



 
 ,








 









 2

95.0,)1()1(2

)1()1(
)1(

/

0~
p

ijij

ijij
ij c

rcifrc

crifr
r  .

Please note that “med” means median and “mad” means

median absolute deviation.

c) Compute a set of weights)1(
iw :





p

j
ij

p

j ij

ij
i w

r

r
w

1

)1(

1
)1(

)1(
)1(

~

. (2)

2) After iterating N times, there are N sets of weights)1(
iw .

Choose one smallest weight for each data point to configure a

set of the initial weights.

3) Robust principal component analysis of the initial mean

vector and the covariance matrix.

a) Compute the initial mean vector 1û and the

covariance matrix 1V̂ as follows:

.)(/)()ˆ)(ˆ(ˆ

,/ˆ

1
2)1(

1
2)1(T

111

)1()1(
1



 






n
i i

n
i iii

n
i

n
i iii

wwuxuxV

wxwu
 (3)

b) Let pbb ˆ,,ˆ
1  be the eigenvectors of 1V


. Project the

data onto the eigenvectors
)2(

ijr and compute
)2(~

ijr as follows:

,
674.0/)mad(

|)med(|

T

TT
)2(

xb

xbxb
r

j

jij
ij




.
/

0~ 2
95.0,)2()2(2

)2()2(
)2(








 









 p

ijij

ijij
ij c

rcifrc

crifr
r 

c) Compute the secondary weights)2(
iw from

)2(
ijr and

)2(~
ijr according to (1).

d) Compare the initial and the secondary weights and
choose the smaller weight for each data point to configure a

set of the final weight iw .

4) Compute the final mean vector 2û and the covariance

matrix 2V


 according to (2).

5) Compute robust Mahalanobis squared distance 2)(ixD

of each data point as follows using 2û and 2V


:

)ˆ(ˆ)ˆ()(2
1

2
T

2
2 uxVuxxD iii   .

6) Mahalanobis squared distance follows the F

distribution with p and n-p degrees of freedom. Compute the

test statistic iF as follows:

2

2
)(

)1(

)(
ii xD

pn

npn
F




 .

Any data point with greater than the corresponding F value
for the 99.9th percentile is recognized as an outlier. The
percentile figure is based on [5].

III. Implementation and Test Environment

An R function of the MSD estimators is developed [9] to
compare the Canada and EUREDIT versions by Monte-Carlo
simulation with the asymmetrically contaminated datasets
based on [11] following the normal and long-tailed
distributions. Both versions performed well; however, the
EUREDIT version was superior owing to the increased
number of orthogonal bases regarding more difficult datasets
for outlier detection method evaluation, such as the Bushfire
dataset [12].

A. Original MSD Function

Among the few differences between the Canada and
EUREDIT versions, the most influential one is the number of
orthogonal bases per dimension to obtain the initial SD
estimators. The number increases exponentially in the
EUREDIT version, as shown in Table I, whereas the Canada
version always needs 10 bases per dimension. In
compensation for better performance in outlier detection, the
large number of bases may lead to running out of memory
and/or an excessively long time to compute, and so the
EUREDIT version is computationally more burdensome than
the Canada version.

TABLE I. MEMORY USED FOR ORTHOGONAL BASES

Number of

variables (p)

Number of

bases (N)

Number of

elements for bases

Megabytes

(MB)
a

2 21 84 1

3 31 279 2

4 52 832 7

5 93 2,325 19

8 5,172 331,008 265

10 25,740 2,574,000 2,059

15 94,774 21,324,150 170,593

20 3,925,749 1,570,299,600 12,562,397

a. Calculated as one element of bases equals 8 bytes.

BEM is fairly fast compared to Fast-MCD [2]; however, in
contrast, MSD becomes much slower than either of these
methods as the dimension p increases. Since its computational
time is the most serious problem of MSD in its practical use
for survey enumeration, the priority is placed on speed in
developing the R function. The MSD function processes N
orthogonal bases in Step 1 simultaneously without looping N
times in order to make the most of the R ability to operate on
vectors, matrices, and arrays. In return for the maximization of
the processing speed, the function requires a large array of size

ppN  for the bases in Step 1-a, and then the projection

residuals
)1(

ijr , trimmed residuals
)1(~

ijr , and the corresponding

weights
)1(

ijw required in Steps 1-b and c each have sizes of

pnN  . The function restricts the number of variables (and

observations) processed, since R keeps all the data in RAM.
Since all the arrays of data described above result in a set of

weights)1(
iw of the pn matrix at the end of Step 1-c, Step 1

is the memory bottleneck.

R works on a single core even on a PC with a multi-core
processor. Therefore, the original MSD function works on a
single core, too, and we consider parallelizing Step 1 to extend
its capacity while sacrificing speed as little as possible.

B. Parallelization

The CRAN packages “foreach” and “doParallel” are used,
and “doParallel” depends on “iterators” and “parallel”. Table
II shows the specifications of the PCs used and the software
versions. The package “doParallel” uses “snow” functionality
on Windows and it enables execution on a cluster [13].

In the parallelized function, we divided an array of bases
into smaller pieces and processed them separated in the

different cores of a PC. Only the smallest set of weights)1(
iw

in each child process is returned to the master process. The
divided pieces have to be within some size limit, since the
parallelized processes share the same memory. On the other
hand, making the pieces smaller increases the number of loops
and requires more computational time. The new parallelized
MSD function has a parameter “dv” to set the maximum
number of elements processed together on the same core.
Finding a suitable setting of dv is also treated in this section.

TABLE II. PC SPECIFICATIONS AND SOFTWARE VERSIONS

Product name EPSON Pro4700

CPU Intel® Core™ i5

 Max clock speed 3.33 GHz

Number of cores 4

RAM 4.000 GB

OS installed Windows 7 Professional

(32 bit)

Available memory on R 1.535 GB

R ver. 3.0.0

CRAN

Packages

Foreach ver. 1.4.0

doParallel ver. 1.0.1

Iterators ver. 1.0.6

Parallel ver. 3.0.0

IV. Evaluation and Tuning

The numerical calculation conducted by the parallelized
function is the same as that of the single-core function.

However, please note that the outcome of the functions

executed over time with a given dataset may not necessarily

be the same unless the same random seed is specified, since

the initial SD estimators are computed based on projection

onto orthogonal bases made from pseudo-random numbers.

A. Evaluation with Asymmetrically Contaminated Datasets

The simulation datasets used here consist of random
variables following a multivariate normal distribution with
asymmetric contamination. This contamination model is of the

form),(),0()1(1 IR  eNN pp  and is particularly

difficult to analyze for many outlier detection procedures [11].
The first and second terms represent normal data and outliers,
respectively. In this formula,  is the fraction of
contamination (the rate of outliers); p is the number of
variables; R is the correlation matrix in which all the
correlations between variables have the same value r; δ
stands for the distance between normal data and outliers;

1e is the first unit vector; and λ is the variance of the outliers.

The actual values of the parameters used and the results of
the comparison with BEM and NNVE are shown in Table III.
The MSD function tends to have fewer false positives and its
accuracy improves along with correlation between variables.
The MSD function also showed better performance than BEM
for outliers with variances larger than that of the normal data;
however, the MSD function may not be suitable for datasets
with any outlier clusters of smaller variance. Further
simulation is necessary with long-tailed datasets, since [4]
showed that BEM does not have good performance with such
datasets.

As the number of variables increases, there is no obvious
sign that the performance of the MSD function drops;
therefore, the choice of N according to (1) proposed by [10]
seems sufficient.

TABLE III. SIMULATION RESULTS OF NNVE, BEM AND MSD

δ ｐ α
False

positives
Leakage

Total

rate

False

positives
Leakage

Total

rate

False

positives
Leakage

Total

rate

False

positives
Leakage

Total

rate

False

positives
Leakage

Total

rate

False

positives
Leakage

Total

rate

34.00% - 66% 1.00% - 99% 0.00% - 100% 12.00% - 88% 0.00% - 100% 0.00% - 100%
25.00% - 75% 0.00% - 100% 0.00% - 100% 10.00% - 90% 0.00% - 100% 0.00% - 100%
50.00% - 50% 0.00% - 100% 0.00% - 100% 9.00% - 91% 0.00% - 100% 0.00% - 100%
8.00% - 92% 0.00% - 100% 0.00% - 100% 9.00% - 91% 0.00% - 100% 0.00% - 100%

0.1 5.56% 0.00% 95% 0.00% 0.00% 100% 0.00% 0.00% 100% 7.78% 0.00% 93% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 100.00% 80% 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 100.00% 100.00% 0% 1.43% 0.00% 99% 24.29% 100.00% 53% 14.29% 100.00% 60% 0.00% 0.00% 100% 1.43% 0.00% 99%
0.4 100.00% 100.00% 0% 10.00% 0.00% 94% 100.00% 100.00% 0% 25.00% 100.00% 45% 1.67% 0.00% 99% 18.33% 100.00% 49%
0.5 100.00% 100.00% 0% 100.00% 96.00% 2% 100.00% 100.00% 0% 42.00% 100.00% 29% 100.00% 96.00% 2% 100.00% 100.00% 0%
0.1 22.22% 0.00% 80% 1.11% 0.00% 99% 0.00% 100.00% 90% 10.00% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 100.00% 80% 10.00% 100.00% 72% 0.00% 0.00% 100% 0.00% 100.00% 80%
0.3 100.00% 100.00% 0% 1.43% 0.00% 99% 12.86% 100.00% 61% 12.86% 100.00% 61% 0.00% 0.00% 100% 0.00% 100.00% 70%
0.4 100.00% 100.00% 0% 0.00% 0.00% 100% 98.33% 100.00% 1% 50.00% 100.00% 30% 0.00% 100.00% 60% 38.33% 100.00% 37%
0.5 100.00% 100.00% 0% 80.00% 100.00% 10% 100.00% 100.00% 0% 16.00% 100.00% 42% 80.00% 100.00% 10% 100.00% 100.00% 0%
0.1 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.11% 0.00% 99% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 0.00% 100% 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 100.00% 100.00% 0% 1.43% 0.00% 99% 1.43% 0.00% 99% 8.57% 100.00% 64% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 100.00% 100.00% 0% 10.00% 0.00% 94% 13.33% 0.00% 92% 26.67% 100.00% 44% 1.67% 0.00% 99% 5.00% 0.00% 97%
0.5 100.00% 100.00% 0% 100.00% 100.00% 0% 100.00% 100.00% 0% 40.00% 100.00% 30% 100.00% 100.00% 0% 100.00% 100.00% 0%
0.1 1.11% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100% 3.33% 0.00% 97% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 0.00% 100% 5.00% 100.00% 76% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 100.00% 100.00% 0% 1.43% 0.00% 99% 0.00% 0.00% 100% 12.86% 100.00% 61% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 0.00% 100% 26.67% 100.00% 44% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.5 100.00% 98.00% 1% 80.00% 100.00% 10% 100.00% 100.00% 0% 22.00% 100.00% 39% 80.00% 100.00% 10% 100.00% 100.00% 0%
0.1 4.44% 0.00% 96% 0.00% 0.00% 100% 0.00% 0.00% 100% 7.78% 0.00% 93% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 5.00% 20.00% 92% 0.00% 0.00% 100% 0.00% 65.00% 87% 7.50% 0.00% 94% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 20.00% 3.33% 85% 1.43% 0.00% 99% 0.00% 100.00% 70% 12.86% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 31.67% 42.50% 64% 10.00% 0.00% 94% 0.00% 100.00% 60% 16.67% 0.00% 90% 1.67% 0.00% 99% 0.00% 60.00% 76%
0.5 28.00% 88.00% 42% 0.00% 100.00% 50% 0.00% 100.00% 50% 8.00% 78.00% 57% 0.00% 92.00% 54% 0.00% 94.00% 53%
0.1 7.78% 0.00% 93% 1.11% 0.00% 99% 0.00% 100.00% 90% 8.89% 0.00% 92% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 28.75% 5.00% 76% 0.00% 0.00% 100% 0.00% 100.00% 80% 10.00% 0.00% 92% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 1.43% 76.67% 76% 1.43% 0.00% 99% 0.00% 100.00% 70% 12.86% 0.00% 91% 0.00% 0.00% 100% 0.00% 60.00% 82%
0.4 8.33% 85.00% 61% 0.00% 0.00% 100% 0.00% 100.00% 60% 15.00% 0.00% 91% 0.00% 5.00% 98% 0.00% 97.50% 61%
0.5 2.00% 90.00% 54% 0.00% 100.00% 50% 0.00% 100.00% 50% 6.00% 76.00% 59% 0.00% 82.00% 59% 0.00% 100.00% 50%
0.1 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.11% 0.00% 99% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 13.75% 10.00% 87% 0.00% 0.00% 100% 0.00% 0.00% 100% 7.50% 0.00% 94% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 30.00% 6.67% 77% 1.43% 0.00% 99% 0.00% 0.00% 100% 12.86% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 100.00% 60% 10.00% 0.00% 94% 0.00% 0.00% 100% 15.00% 0.00% 91% 1.67% 0.00% 99% 1.67% 0.00% 99%
0.5 50.00% 62.00% 44% 0.00% 100.00% 50% 0.00% 100.00% 50% 10.00% 40.00% 75% 0.00% 100.00% 50% 0.00% 100.00% 50%
0.1 1.11% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.11% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 0.00% 95.00% 81% 0.00% 0.00% 100% 0.00% 0.00% 100% 11.25% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 34.29% 6.67% 74% 1.43% 0.00% 99% 0.00% 0.00% 100% 12.86% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 100.00% 60% 0.00% 0.00% 100% 0.00% 0.00% 100% 15.00% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.5 16.00% 86.00% 49% 0.00% 100.00% 50% 0.00% 100.00% 50% 6.00% 86.00% 54% 0.00% 92.00% 54% 0.00% 100.00% 50%
0.1 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 7.78% 0.00% 93% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.25% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 0.00% 0.00% 100% 1.43% 0.00% 99% 0.00% 0.00% 100% 4.29% 0.00% 97% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 0.00% 100% 10.00% 0.00% 94% 0.00% 2.50% 99% 5.00% 0.00% 97% 1.67% 0.00% 99% 0.00% 0.00% 100%
0.5 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 6.00% 97% 10.00% 0.00% 95% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.1 1.11% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100% 4.44% 0.00% 96% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 5.00% 0.00% 96% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 0.00% 0.00% 100% 1.43% 0.00% 99% 0.00% 0.00% 100% 1.43% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 3.33% 0.00% 98% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.5 0.00% 0.00% 100% 0.00% 20.00% 90% 0.00% 2.00% 99% 2.00% 0.00% 99% 0.00% 20.00% 90% 0.00% 0.00% 100%
0.1 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 2.22% 0.00% 98% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.25% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 0.00% 0.00% 100% 1.43% 0.00% 99% 0.00% 0.00% 100% 4.29% 0.00% 97% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 0.00% 100% 10.00% 0.00% 94% 0.00% 0.00% 100% 5.00% 0.00% 97% 1.67% 0.00% 99% 0.00% 0.00% 100%
0.5 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 12.00% 94% 10.00% 0.00% 95% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.1 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.11% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 2.50% 0.00% 98% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 0.00% 0.00% 100% 1.43% 0.00% 99% 0.00% 0.00% 100% 5.71% 0.00% 96% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 3.33% 0.00% 98% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.5 0.00% 0.00% 100% 0.00% 20.00% 90% 0.00% 22.00% 89% 6.00% 0.00% 97% 0.00% 20.00% 90% 0.00% 0.00% 100%

SD of

outliers

Dist-

ance
Variables Outliers

Correlation between variables 0 Correlation between variables 0.8

NNVE BEM MSD NNVE BEM MSD

- 0
10 0

20 0

0.1

10

10

20

100

10

20

1

10

10

20

100

10

20

5

10

10

20

100

10

20



B. Examples with Various Datasets

The results of three different datasets are shown here in
order to illustrate the performance of the parallelized MSD
function.

The first example is the Bushfire dataset to locate bushfire
scars. It has 5 variables and 38 observations, and is widely
used to evaluate multivariate outlier detection methods (e.g.,
[10]). The results are shown as Fig. 1. Outliers detected are
shown in red. The number of outliers detected is 12 or 13,
which depends on the random seed.

Fig. 1. Bushfire Data

The next example is from the simulation datasets used in
subsection A. The scatterplot matrix is shown as Fig. 2. The
dataset has 100 observations, 20 variables with no correlation,
contamination α=0.1, distance δ=10, and variance of outliers
λ=5. The parallelized function worked with dv=100,000,
which means 250 sets of orthogonal bases were processed
simultaneously and the correct outliers were detected. The
computational time slightly exceeds 2 hours. The single-core
function can process at most 11 variables with 100
observations.

The last example is Synthetic Microdata, provided by the
National Statistics Center (NSTAC) of Japan. Since the use of
microdata of official statistical surveys is restricted in order to
protect respondents’ privacy, the dataset is not of the real data,
but rather is generated from random numbers; however, the
data has similar distributions and relations between variables
to the real survey data. Synthetic Microdata is based on the
descriptive statistics on the 2004 National Survey of Family
Income and Expenditure, which concerns workers’ households
having at least two persons. We extracted 10 numerical
variables, removed observations less than or equal to zero, and
carried out logarithmic transformation so that the data cloud
would have an elliptical shape. The dataset contains 20,336
observations. The results are shown as Fig. 3 and the
fundamental statistics of both before and after the detection
are listed in Table IV (below Fig. 3). As shown in the figure,

the function effectively removes the tail of the distribution.
The single-core function can process at most 5 variables with
20,336 observations.

C. Tuning

The parallelized function takes over 9 seconds for
Synthetic Data of 5 variables, although the single-core
function takes only about 6 seconds to process the same
dataset. This is because the parallelized code needs to call
packages, carrying out iteration, and conduct inter-core
communication, which the single-core codes does not need to
do; however, the efficiency is expected to increase along with
a number of variables p. The parallelized function takes about
55 seconds with 8 variables and 150 seconds with 10 variables.
Various settings of dv are also tested to find an appropriate
size of bases processed simultaneously for the case of
Synthetic Microdata.

The results of the turning are shown in Tables V, VI, and
VII. The parameter dv determines the maximum number of
elements for orthogonal bases, the number of bases processed
simultaneously, and the total number of iterations. Any
inappropriate setting of dv causes an out-of-memory problem
and a better setting improves processing speed.

Although the tuning tests executed here are limited to a PC
with multi-core processes as the test environment, we expect
that the parallelized code could be easily extended to a cluster
environment, considering the characteristics of the package
“doParallel” [14].

TABLE V. DATASET WITH 5 VARIABLES

dv
c

Total

iterations

d

Chunk

size
e

System Time

User System Elapsed

300-500 8 12 0.24 0.01 6.81

600-8000 4 24 0.26 0.02 7.69

c. Maximum number of elements processed simultaneously on one core.

d. Total number of iterations on all cores.

e. Number of bases processed simultaneously on one core.

TABLE VI. DATASET WITH 8 VARIABLES

dv
 Total

iterations

Chunk

size

System Time

User System Elapsed

300 164 4 0.58 0.07 38.16

400 108 6 0.43 0.06 36.34

500 96 7 0.33 0.03 36.63

600 72 9 0.39 0.05 35.73

700 68 10 0.39 0.04 36.58

800 56 12 0.45 0.06 35.68

900 48 14 0.35 0.03 38.08

1000 44 15 0.39 0.03 38.33

2000 24 27 0.34 0.03 43.54

3000 16 41 0.26 0.00 47.51

5000 12 54 0.39 0.06 80.47

8000 8 81 0.35 0.16 118.89

TABLE VII. DATASET WITH 10 VARIABLES

dv
 Total

iterations

Chunk

size

System Time

User System Elapsed

300 860 3 1.66 0.44 164.38

400 644 4 1.40 0.27 157.34

500 516 5 1.20 0.31 152.21

600 432 6 0.74 0.20 147.34

700 368 7 0.82 0.15 145.53

800 324 8 0.81 0.17 143.35

900 288 9 0.71 0.21 144.32

1000 260 10 0.55 0.13 140.23

1200 216 12 0.67 0.12 144.17

1500 172 15 0.50 0.06 153.33

2000 132 20 0.47 0.07 168.95

3000 88 30 0.53 0.13 204.21

5000 52 50 0.78 0.25 527.03

8000 36 72 N.A. N.A. N.A.

V. Conclusion

In this paper, we presented a parallel algorithm for the
MSD estimators for multivariate outlier detection, along with
a few examples. The parallelized R function is able to cope
with a bigger dataset and is applicable not only for the
practical use of official survey statistics enumeration but also
for general statistical modeling of big multivariate data in
business or scientific research.

All the R packages used and R itself are distributed by the
Comprehensive R Archive Network (CRAN: http://cran.r-
project.org), including the NNVE function “cov.nnve” of
library “covRobust”. The parallelized R function code
developed and tested in this paper has been uploaded to a
public repository,
https://github.com/kazwd2008/MSD.parallel/. The original
single-core function published in [9] is also made available at
https://github.com/kazwd2008/MSD/. The BEM function for
R has been ported by Masato Okamoto of the Ministry of
Internal Affairs and Communications from the original code
for S-plus by Cedric Béguin published in [2]. The details of
the modifications have been documented and made available
at https://github.com/kazwd2008/BEM/.

Fig. 2. Outliers in Simulation Data

Fig. 3. Outliers in Synthetic Microdata

TABLE IV. DEFFERENCE OF FUNDAMENTAL STATISTICS AFTER OUTLIER DETECTION [SYNTHETIC MICRODATA, 10 VARIABLES]

Statistics
Annual Income Net Income

Consumption

Expenditure
Food Expenditure

Housing

Expenditure

Original Cleaned Original Cleaned Original Cleaned Original Cleaned Original Cleaned

Min. 2.490 2.885 4.253 4.735 4.794 4.796 3.776 4.084 0.479 0.479

Q1 3.683 3.685 5.529 5.531 5.353 5.354 4.717 4.719 3.177 3.179

Median 3.818 3.819 5.656 5.656 5.467 5.466 4.834 4.835 3.945 3.938

Mean 3.807 3.809 5.646 5.647 5.477 5.473 4.822 4.825 3.815 3.812

Q3 3.947 3.947 5.778 5.776 5.587 5.583 4.938 4.939 4.568 4.562

Max. 4.879 4.615 7.024 6.431 6.894 6.285 5.539 5.539 6.875 5.877

SD
f
 0.2068 0.2067 0.1896 0.1723 0.8697 0.1677 0.4454 0.4776 0.3212 0.3640

Statistics
Gas, Electricity and

Water
Clothing Health Care

Transportation and

Communication

Culture and

Amusement

Original Cleaned Original Cleaned Original Cleaned Original Cleaned Original Cleaned

Min. 1.651 3.503 1.039 1.938 0.321 1.568 1.807 3.102 1.597 2.635

Q1 4.137 4.138 3.697 3.702 3.552 3.556 4.367 4.370 4.126 4.132

Median 4.245 4.246 3.970 3.972 3.855 3.858 4.554 4.555 4.357 4.359

Mean 4.245 4.247 3.943 3.949 3.819 3.823 4.549 4.549 4.341 4.347

Q3 4.355 4.355 4.228 4.229 4.117 4.116 4.735 4.734 4.576 4.577

Max. 5.100 4.937 6.033 5.553 5.955 5.766 6.701 6.030 5.920 5.792

SD 0.2004 0.1962 0.1793 0.1688 0.8637 0.1637 0.4320 0.4659 0.3057 0.3516

f. SD stands for standard deviation.

References

[1] C. Snijders, U. Matzat, and U.-D. Reips, “‘Big Data’: big gaps of

knowledge in the field of Internet science,” International Journal of
Internet Science, vol. 7, pp. 1-5, 2012.

[2] C. Béguin and B. Hulliger, “Robust multivariate outlier detection and

imputation with incomplete survey data”, EUREDIT Deliverable
D4/5.2.1/2 Part C, 2003.

[3] G. Barcaroli, “The EUREDIT project: activities and results,” Rivista di

statistica ufficiale, issue 2, pp. 101-135, 2002.

[4] K. Wada, “Comparison of multivariate outlier detection methods,”
Proceedings of the 2004 Japanese Joint Statistical Meeting, pp. 95-96,

2004 (in Japanese).

[5] S. Franklin and M. Brodeur, “A practical application of a robust
multivariate outlier detection method,” Proceedings of the Survey

Research Methods Section, the American Statistical Association, pp.
186-191, 1997.

[6] W. A. Stahel, “Breakdown of covariance estimators,” Research Report
31, Fachgruppe für Statistik, E.T.H. Zürich, 1981.

[7] D. L. Donoho, “Breakdown properties of multivariate location

estimators”, Ph.D. qualifying paper, Harvard University, 1982.

[8] Z. Patak, “Robust principal component analysis via projection pursuit,”

M. Sc. Thesis, University of British Columbia, Canada, 1990.

[9] K. Wada, “Detection of multivariate outliers: modified Stahel-Donoho
estimators,” Research Memoir of Official Statistics, Statistical Research

and Training Institute, no. 67, pp. 89-157, 2010, available at
http://www.stat.go.jp/training/2kenkyu/pdf/ihou/67/wada1.pdf (in

Japanese).

[10] R. A. Maronna and V. J. Yohai, “The behavior of the Stahel-Donoho
robust multivariate estimator,” Journal of the American Statistical

Association, vol. 90, pp. 330-341, 1995.

[11] D. Peña and F. J. Prieto, “Multivariate outlier detection and robust
covariance matrix estimation,” Technometrics, vol. 43, pp. 286-300,

2001.

[12] N. A. Campbell, “Bushfire mapping using NOAA AVHRR data,”
Technical report, CSIRO, 1989.

[13] S. Weston and R. Calaway, “Getting started with doParallel and

foreach,” 2010, available at http://cran.r-
project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf.

[14] Revolution Analytics. “doParallel: Foreach parallel adaptor for the
parallel package,” R package version 1.0.1. 2012, available at

http ://CRAN.R-project.org/package=doParallel.

