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Abstract—Modified Stahel–Donoho (MSD) estimators are an 

orthogonally equivariant multivariate outlier detection method 

with a high breakdown point for all dimensions. An R function of 

the MSD estimators is created and its performance is confirmed; 

however, the method suffers from the curse of dimensionality and 

its implementation is limited to relatively low dimensional 

datasets. This paper proposes a parallel computing approach to 

cope with higher dimensionality and presents results for a few 

datasets to illustrate its use. Code for both the utilized 

parallelized function and the original single-core function have 
been placed in a public repository for further evaluation. 

Keywords—multivariate location and scatter; projection 

pursuit; outlier detection; Mahalanobis distance. 

I. Objective 

The phrase “big data” is a loosely defined term used to 
describe datasets so large and complex that they are awkward 
to work with using standard statistical software [1]. In the field 
of official statistics, survey and census microdata before 
aggregation have an usually large volume and are sometimes 
not easily processed by statistical software. One example is 
the outlier detection process to make a raw dataset clean for 
enumeration. Univariate outlier detection methods are 
commonly used; however, multivariate detection methods are 
not convenient for most national statistical offices, due to the 
computational burden. This paper discusses part of the work to 
explore and evaluate promising multivariate outlier detection 
methods for official survey enumeration. 

A comprehensive research project on the editing and 
imputation of official statistics named EUREDIT launched in 
2000. It was funded by Eurostat and involved professionals of 
national statistics offices and academics in the same regions. 
Several modern multivariate outlier detection methods were 
examined in the project [2]. The results suggest there is no 
“best” method, in the sense that no method works best in all 
situations [3]. Reference [4] chose the forward search 
(BACON-EEM: BEM), the minimization of scale (Fast-MCD), 
and the nearest neighbor (NNVE) algorithm among those 
examined in [2] and made a comparison with random number 
datasets following contaminated normal and long-tailed 
distributions. The results favored BEM, as in [2], and also 
suggested that nonparametric methods such as the nearest 
neighbor algorithm may not be desirable for elliptically 

distributed data; nevertheless, survey data often fit an elliptical 
model, after transformation, as necessary. 

Statistics Canada introduced the modified Stahel–Donoho 
(MSD) estimators based on the projection pursuit algorithm 
for multivariate outlier detection of the Annual Wholesale and 
Retail Trade Survey (AWRTS) according to [5]. The MSD 
estimators are a combination of the Stahel–Donoho (SD) 
estimators [6] [7], and projection pursuit (PP) [8]. The 
estimators achieve orthogonal equivariance and sufficient 
robustness owing to their high breakdown point. A few 
improvements for MSD are also suggested by [2]. Then an R 
function to implement both the method proposed by [5] and 
the improved version of [2] was created [9]. We will refer to 
the former method as the Canada version and the latter method 
as the EUREDIT version. 

The EUREDIT version of the MSD estimators and their 
algorithm are reviewed in the next section. The major 
difference with the Canada version is also briefly explained. 
Then the problem with the EUREDIT version for practical 
implementations is discussed and a parallelization of the MSD 
function is proposed to cope with larger datasets in section III. 
In section IV, we compare MSD to BEM and NNVE using 
simulation datasets following an asymmetrically contaminated 
normal distribution and then demonstrate the performance of 
the parallelized MSD with three different datasets. The 
problem of tuning the parallelized MSD is also discussed. 

II. MSD Estimators 

A. Methodology 

The SD estimators can be regarded as robust estimators of 
the mean vector and the covariance matrix. Data points are 
projected onto randomly generated orthogonal bases. Since 
multivariate data are translated into one-dimensional data by 
projection, the problem is reduced to the estimation of one-
dimensional location and scale in each projection. 

Observations of those MAD/|median| ix  exceed a certain 

threshold are regarded as possible outliers and downweighted, 

where MAD stands for median absolute deviation and ix  is a 

one-dimensional projected data point. 

Let X be the n×p data matrix with n observations 

),,( 1 nxx   and p variables. The superscript T designates a 



matrix or vector transpose. Let  and 2  be affine 

equivariant univariate estimators of location and scatter. The 

outlyingness measure ir  of each observation ix  is given by  
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Each ir  is a measure of the maximum standardized one-

dimensional deviation from the estimated location   for all 

directions in p
R . Then the weights are computed as 

)( ii rww  , where  RR:w  is a weight function, and the 

SD estimators are defined as  
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The finite sample breakdown point was studied when ir  is 

taken from a random subset of size N  of all p
R  with 

1 and resulted in the following size N  to maintain a high 

breakdown point and the weight function w [10]: 
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See [2] and [10] for further details. Table I shows how the 
size N increases along with p. 

The MSD estimators proposed by [5] use the SD 
estimators as the initial robust mean vector and covariance 
matrix. These are used for the following principal component 
analysis of PP, which regards the principal components as 
“interesting” directions to find outliers. Then the Mahalanobis 
distance is computed from the final mean vector and 
covariance matrix to detect outliers. 

B. Algorithm 

The following algorithm is the EUREDIT version, i.e., the 
algorithm based on [5]. It also incorporates a few 
improvements of [2]. 

1) Let N be the number of orthogonal basis required as 

described in the previous subsection. Repeat the following 

three steps N times. 

a) Obtain the necessary amount of random numbers and 

create p-dimensional unit vectors. 

b) Make the unit vectors an orthogonal basis 

pjj ,,1,  . Project the data onto j . Compute residuals 

)1(
ijr  and trimmed residuals 

)1(~
ijr  as follows:  
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Please note that “med” means median and “mad” means 

median absolute deviation. 

c) Compute a set of weights )1(
iw : 
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2) After iterating N times, there are N sets of weights )1(
iw . 

Choose one smallest weight for each data point to configure a 

set of the initial weights. 

3) Robust principal component analysis of the initial mean 

vector and the covariance matrix. 

a) Compute the initial mean vector 1û  and the 

covariance matrix 1V̂  as follows: 
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b) Let pbb ˆ,,ˆ
1   be the eigenvectors of 1V


. Project the 

data onto the eigenvectors 
)2(

ijr  and compute
)2(~

ijr as follows:  
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c) Compute the secondary weights )2(
iw  from 

)2(
ijr  and 

)2(~
ijr  according to (1). 

d) Compare the initial and the secondary weights and 
choose the smaller weight for each data point to configure a 

set of the final weight iw . 

4) Compute the final mean vector 2û  and the covariance 

matrix  2V


 according to (2). 

5) Compute robust Mahalanobis squared distance 2)( ixD  

of each data point as follows using 2û  and 2V


: 
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6) Mahalanobis squared distance follows the F 

distribution with p and n-p degrees of freedom. Compute the 

test statistic iF  as follows: 
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Any data point with greater than the corresponding F value 
for the 99.9th percentile is recognized as an outlier. The 
percentile figure is based on [5]. 

III. Implementation and Test Environment 

An R function of the MSD estimators is developed [9] to 
compare the Canada and EUREDIT versions by Monte-Carlo 
simulation with the asymmetrically contaminated datasets 
based on [11] following the normal and long-tailed 
distributions. Both versions performed well; however, the 
EUREDIT version was superior owing to the increased 
number of orthogonal bases regarding more difficult datasets 
for outlier detection method evaluation, such as the Bushfire 
dataset [12]. 

A. Original MSD Function 

Among the few differences between the Canada and 
EUREDIT versions, the most influential one is the number of 
orthogonal bases per dimension to obtain the initial SD 
estimators. The number increases exponentially in the 
EUREDIT version, as shown in Table I, whereas the Canada 
version always needs 10 bases per dimension. In 
compensation for better performance in outlier detection, the 
large number of bases may lead to running out of memory 
and/or an excessively long time to compute, and so the 
EUREDIT version is computationally more burdensome than 
the Canada version. 

TABLE I.  MEMORY USED FOR ORTHOGONAL BASES 

Number of 

variables (p) 

Number of 

bases (N) 

Number of 

elements for bases 

Megabytes  

(MB) 
a
 

2 21 84 1 

3 31 279 2 

4 52 832 7 

5 93 2,325 19 

8 5,172 331,008 265 

10 25,740 2,574,000 2,059 

15 94,774 21,324,150 170,593 

20 3,925,749 1,570,299,600 12,562,397 

a. Calculated as one element of bases equals 8 bytes. 

BEM is fairly fast compared to Fast-MCD [2]; however, in 
contrast, MSD becomes much slower than either of these 
methods as the dimension p increases. Since its computational 
time is the most serious problem of MSD in its practical use 
for survey enumeration, the priority is placed on speed in 
developing the R function. The MSD function processes N 
orthogonal bases in Step 1 simultaneously without looping N 
times in order to make the most of the R ability to operate on 
vectors, matrices, and arrays. In return for the maximization of 
the processing speed, the function requires a large array of size 

ppN   for the bases in Step 1-a, and then the projection 

residuals 
)1(

ijr , trimmed residuals 
)1(~

ijr , and the corresponding 

weights 
)1(

ijw  required in Steps 1-b and c each have sizes of 

pnN  . The function restricts the number of variables (and 

observations) processed, since R keeps all the data in RAM. 
Since all the arrays of data described above result in a set of 

weights )1(
iw  of the pn matrix at the end of Step 1-c, Step 1 

is the memory bottleneck. 

R works on a single core even on a PC with a multi-core 
processor. Therefore, the original MSD function works on a 
single core, too, and we consider parallelizing Step 1 to extend 
its capacity while sacrificing speed as little as possible. 

B. Parallelization 

The CRAN packages “foreach” and “doParallel” are used, 
and “doParallel” depends on “iterators” and “parallel”. Table 
II shows the specifications of the PCs used and the software 
versions. The package “doParallel” uses “snow” functionality 
on Windows and it enables execution on a cluster [13].  

In the parallelized function, we divided an array of bases 
into smaller pieces and processed them separated in the 

different cores of a PC. Only the smallest set of weights )1(
iw  

in each child process is returned to the master process. The 
divided pieces have to be within some size limit, since the 
parallelized processes share the same memory. On the other 
hand, making the pieces smaller increases the number of loops 
and requires more computational time. The new parallelized 
MSD function has a parameter “dv” to set the maximum 
number of elements processed together on the same core. 
Finding a suitable setting of dv is also treated in this section. 

TABLE II.  PC SPECIFICATIONS AND SOFTWARE VERSIONS 

Product name EPSON Pro4700 

CPU Intel® Core™ i5 

 Max clock speed 3.33 GHz 

Number of cores 4 

RAM 4.000 GB 

OS installed Windows 7 Professional 

(32 bit) 

Available memory on R 1.535 GB 

R ver. 3.0.0 

CRAN 

Packages 

Foreach ver. 1.4.0 

doParallel ver. 1.0.1 

Iterators ver. 1.0.6 

Parallel ver. 3.0.0 

 

IV. Evaluation and Tuning 

The numerical calculation conducted by the parallelized 
function is the same as that of the single-core function. 

However, please note that the outcome of the functions 

executed over time with a given dataset may not necessarily 

be the same unless the same random seed is specified, since 

the initial SD estimators are computed based on projection 

onto orthogonal bases made from pseudo-random numbers. 



A. Evaluation with Asymmetrically Contaminated Datasets 

The simulation datasets used here consist of random 
variables following a multivariate normal distribution with 
asymmetric contamination. This contamination model is of the 

form ),(),0()1( 1 IR  eNN pp  and is particularly 

difficult to analyze for many outlier detection procedures [11]. 
The first and second terms represent normal data and outliers, 
respectively. In this formula,   is the fraction of 
contamination (the rate of outliers); p is the number of 
variables; R  is the correlation matrix in which all the 
correlations between variables have the same value r; δ 
stands for the distance between normal data and outliers; 

1e  is the first unit vector; and λ is the variance of the outliers. 

The actual values of the parameters used and the results of 
the comparison with BEM and NNVE are shown in Table III. 
The MSD function tends to have fewer false positives and its 
accuracy improves along with correlation between variables. 
The MSD function also showed better performance than BEM 
for outliers with variances larger than that of the normal data; 
however, the MSD function may not be suitable for datasets 
with any outlier clusters of smaller variance. Further 
simulation is necessary with long-tailed datasets, since [4] 
showed that BEM does not have good performance with such 
datasets. 

As the number of variables increases, there is no obvious 
sign that the performance of the MSD function drops; 
therefore, the choice of N according to (1) proposed by [10] 
seems sufficient. 

TABLE III.  SIMULATION RESULTS OF NNVE, BEM AND MSD 

δ ｐ α
False

positives
Leakage

Total

rate

False

positives
Leakage

Total

rate

False

positives
Leakage

Total

rate

False

positives
Leakage

Total

rate

False

positives
Leakage

Total

rate

False

positives
Leakage

Total

rate

34.00% - 66% 1.00% - 99% 0.00% - 100% 12.00% - 88% 0.00% - 100% 0.00% - 100%
25.00% - 75% 0.00% - 100% 0.00% - 100% 10.00% - 90% 0.00% - 100% 0.00% - 100%
50.00% - 50% 0.00% - 100% 0.00% - 100% 9.00% - 91% 0.00% - 100% 0.00% - 100%
8.00% - 92% 0.00% - 100% 0.00% - 100% 9.00% - 91% 0.00% - 100% 0.00% - 100%

0.1 5.56% 0.00% 95% 0.00% 0.00% 100% 0.00% 0.00% 100% 7.78% 0.00% 93% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 100.00% 80% 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 100.00% 100.00% 0% 1.43% 0.00% 99% 24.29% 100.00% 53% 14.29% 100.00% 60% 0.00% 0.00% 100% 1.43% 0.00% 99%
0.4 100.00% 100.00% 0% 10.00% 0.00% 94% 100.00% 100.00% 0% 25.00% 100.00% 45% 1.67% 0.00% 99% 18.33% 100.00% 49%
0.5 100.00% 100.00% 0% 100.00% 96.00% 2% 100.00% 100.00% 0% 42.00% 100.00% 29% 100.00% 96.00% 2% 100.00% 100.00% 0%
0.1 22.22% 0.00% 80% 1.11% 0.00% 99% 0.00% 100.00% 90% 10.00% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 100.00% 80% 10.00% 100.00% 72% 0.00% 0.00% 100% 0.00% 100.00% 80%
0.3 100.00% 100.00% 0% 1.43% 0.00% 99% 12.86% 100.00% 61% 12.86% 100.00% 61% 0.00% 0.00% 100% 0.00% 100.00% 70%
0.4 100.00% 100.00% 0% 0.00% 0.00% 100% 98.33% 100.00% 1% 50.00% 100.00% 30% 0.00% 100.00% 60% 38.33% 100.00% 37%
0.5 100.00% 100.00% 0% 80.00% 100.00% 10% 100.00% 100.00% 0% 16.00% 100.00% 42% 80.00% 100.00% 10% 100.00% 100.00% 0%
0.1 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.11% 0.00% 99% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 0.00% 100% 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 100.00% 100.00% 0% 1.43% 0.00% 99% 1.43% 0.00% 99% 8.57% 100.00% 64% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 100.00% 100.00% 0% 10.00% 0.00% 94% 13.33% 0.00% 92% 26.67% 100.00% 44% 1.67% 0.00% 99% 5.00% 0.00% 97%
0.5 100.00% 100.00% 0% 100.00% 100.00% 0% 100.00% 100.00% 0% 40.00% 100.00% 30% 100.00% 100.00% 0% 100.00% 100.00% 0%
0.1 1.11% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100% 3.33% 0.00% 97% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 0.00% 100% 5.00% 100.00% 76% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 100.00% 100.00% 0% 1.43% 0.00% 99% 0.00% 0.00% 100% 12.86% 100.00% 61% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 100.00% 100.00% 0% 0.00% 0.00% 100% 0.00% 0.00% 100% 26.67% 100.00% 44% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.5 100.00% 98.00% 1% 80.00% 100.00% 10% 100.00% 100.00% 0% 22.00% 100.00% 39% 80.00% 100.00% 10% 100.00% 100.00% 0%
0.1 4.44% 0.00% 96% 0.00% 0.00% 100% 0.00% 0.00% 100% 7.78% 0.00% 93% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 5.00% 20.00% 92% 0.00% 0.00% 100% 0.00% 65.00% 87% 7.50% 0.00% 94% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 20.00% 3.33% 85% 1.43% 0.00% 99% 0.00% 100.00% 70% 12.86% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 31.67% 42.50% 64% 10.00% 0.00% 94% 0.00% 100.00% 60% 16.67% 0.00% 90% 1.67% 0.00% 99% 0.00% 60.00% 76%
0.5 28.00% 88.00% 42% 0.00% 100.00% 50% 0.00% 100.00% 50% 8.00% 78.00% 57% 0.00% 92.00% 54% 0.00% 94.00% 53%
0.1 7.78% 0.00% 93% 1.11% 0.00% 99% 0.00% 100.00% 90% 8.89% 0.00% 92% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 28.75% 5.00% 76% 0.00% 0.00% 100% 0.00% 100.00% 80% 10.00% 0.00% 92% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 1.43% 76.67% 76% 1.43% 0.00% 99% 0.00% 100.00% 70% 12.86% 0.00% 91% 0.00% 0.00% 100% 0.00% 60.00% 82%
0.4 8.33% 85.00% 61% 0.00% 0.00% 100% 0.00% 100.00% 60% 15.00% 0.00% 91% 0.00% 5.00% 98% 0.00% 97.50% 61%
0.5 2.00% 90.00% 54% 0.00% 100.00% 50% 0.00% 100.00% 50% 6.00% 76.00% 59% 0.00% 82.00% 59% 0.00% 100.00% 50%
0.1 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.11% 0.00% 99% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 13.75% 10.00% 87% 0.00% 0.00% 100% 0.00% 0.00% 100% 7.50% 0.00% 94% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 30.00% 6.67% 77% 1.43% 0.00% 99% 0.00% 0.00% 100% 12.86% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 100.00% 60% 10.00% 0.00% 94% 0.00% 0.00% 100% 15.00% 0.00% 91% 1.67% 0.00% 99% 1.67% 0.00% 99%
0.5 50.00% 62.00% 44% 0.00% 100.00% 50% 0.00% 100.00% 50% 10.00% 40.00% 75% 0.00% 100.00% 50% 0.00% 100.00% 50%
0.1 1.11% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.11% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 0.00% 95.00% 81% 0.00% 0.00% 100% 0.00% 0.00% 100% 11.25% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 34.29% 6.67% 74% 1.43% 0.00% 99% 0.00% 0.00% 100% 12.86% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 100.00% 60% 0.00% 0.00% 100% 0.00% 0.00% 100% 15.00% 0.00% 91% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.5 16.00% 86.00% 49% 0.00% 100.00% 50% 0.00% 100.00% 50% 6.00% 86.00% 54% 0.00% 92.00% 54% 0.00% 100.00% 50%
0.1 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 7.78% 0.00% 93% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.25% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 0.00% 0.00% 100% 1.43% 0.00% 99% 0.00% 0.00% 100% 4.29% 0.00% 97% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 0.00% 100% 10.00% 0.00% 94% 0.00% 2.50% 99% 5.00% 0.00% 97% 1.67% 0.00% 99% 0.00% 0.00% 100%
0.5 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 6.00% 97% 10.00% 0.00% 95% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.1 1.11% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100% 4.44% 0.00% 96% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 5.00% 0.00% 96% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 0.00% 0.00% 100% 1.43% 0.00% 99% 0.00% 0.00% 100% 1.43% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 3.33% 0.00% 98% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.5 0.00% 0.00% 100% 0.00% 20.00% 90% 0.00% 2.00% 99% 2.00% 0.00% 99% 0.00% 20.00% 90% 0.00% 0.00% 100%
0.1 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 2.22% 0.00% 98% 1.11% 0.00% 99% 1.11% 0.00% 99%
0.2 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.25% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 0.00% 0.00% 100% 1.43% 0.00% 99% 0.00% 0.00% 100% 4.29% 0.00% 97% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 0.00% 100% 10.00% 0.00% 94% 0.00% 0.00% 100% 5.00% 0.00% 97% 1.67% 0.00% 99% 0.00% 0.00% 100%
0.5 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 12.00% 94% 10.00% 0.00% 95% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.1 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 1.11% 0.00% 99% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.2 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 2.50% 0.00% 98% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.3 0.00% 0.00% 100% 1.43% 0.00% 99% 0.00% 0.00% 100% 5.71% 0.00% 96% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.4 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 100% 3.33% 0.00% 98% 0.00% 0.00% 100% 0.00% 0.00% 100%
0.5 0.00% 0.00% 100% 0.00% 20.00% 90% 0.00% 22.00% 89% 6.00% 0.00% 97% 0.00% 20.00% 90% 0.00% 0.00% 100%

SD of
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Correlation between variables 0 Correlation between variables 0.8
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B. Examples with Various Datasets 

The results of three different datasets are shown here in 
order to illustrate the performance of the parallelized MSD 
function. 

The first example is the Bushfire dataset to locate bushfire 
scars. It has 5 variables and 38 observations, and is widely 
used to evaluate multivariate outlier detection methods (e.g., 
[10]). The results are shown as Fig. 1. Outliers detected are 
shown in red. The number of outliers detected is 12 or 13, 
which depends on the random seed. 

 

Fig. 1. Bushfire Data 

The next example is from the simulation datasets used in 
subsection A. The scatterplot matrix is shown as Fig. 2. The 
dataset has 100 observations, 20 variables with no correlation, 
contamination α=0.1, distance δ=10, and variance of outliers 
λ=5. The parallelized function worked with dv=100,000, 
which means 250 sets of orthogonal bases were processed 
simultaneously and the correct outliers were detected. The 
computational time slightly exceeds 2 hours. The single-core 
function can process at most 11 variables with 100 
observations. 

The last example is Synthetic Microdata, provided by the 
National Statistics Center (NSTAC) of Japan. Since the use of 
microdata of official statistical surveys is restricted in order to 
protect respondents’ privacy, the dataset is not of the real data, 
but rather is generated from random numbers; however, the 
data has similar distributions and relations between variables 
to the real survey data. Synthetic Microdata is based on the 
descriptive statistics on the 2004 National Survey of Family 
Income and Expenditure, which concerns workers’ households 
having at least two persons. We extracted 10 numerical 
variables, removed observations less than or equal to zero, and 
carried out logarithmic transformation so that the data cloud 
would have an elliptical shape. The dataset contains 20,336 
observations. The results are shown as Fig. 3 and the 
fundamental statistics of both before and after the detection 
are listed in Table IV (below Fig. 3). As shown in the figure, 

the function effectively removes the tail of the distribution. 
The single-core function can process at most 5 variables with 
20,336 observations. 

C.  Tuning 

The parallelized function takes over 9 seconds for 
Synthetic Data of 5 variables, although the single-core 
function takes only about 6 seconds to process the same 
dataset. This is because the parallelized code needs to call 
packages, carrying out iteration, and conduct inter-core 
communication, which the single-core codes does not need to 
do; however, the efficiency is expected to increase along with 
a number of variables p. The parallelized function takes about 
55 seconds with 8 variables and 150 seconds with 10 variables. 
Various settings of dv are also tested to find an appropriate 
size of bases processed simultaneously for the case of 
Synthetic Microdata. 

The results of the turning are shown in Tables V, VI, and 
VII. The parameter dv determines the maximum number of 
elements for orthogonal bases, the number of bases processed 
simultaneously, and the total number of iterations. Any 
inappropriate setting of dv causes an out-of-memory problem 
and a better setting improves processing speed. 

Although the tuning tests executed here are limited to a PC 
with multi-core processes as the test environment, we expect 
that the parallelized code could be easily extended to a cluster 
environment, considering the characteristics of the package 
“doParallel” [14]. 

TABLE V.  DATASET WITH 5 VARIABLES 

dv
c 

Total 

iterations
 

d 

Chunk 

size 
e
  

System Time 

User System Elapsed 

300-500 8 12 0.24 0.01 6.81 

600-8000 4 24 0.26 0.02 7.69 

c. Maximum number of elements processed simultaneously on one core. 

d. Total number of iterations on all cores. 

e. Number of bases processed simultaneously on one core. 

TABLE VI.  DATASET WITH 8 VARIABLES 

dv
 Total 

iterations
 

Chunk 

size  

System Time 

User System Elapsed 

300 164 4 0.58 0.07 38.16 

400 108 6 0.43 0.06 36.34 

500 96 7 0.33 0.03 36.63 

600 72 9 0.39 0.05 35.73 

700 68 10 0.39 0.04 36.58 

800 56 12 0.45 0.06 35.68 

900 48 14 0.35 0.03 38.08 

1000 44 15 0.39 0.03 38.33 

2000 24 27 0.34 0.03 43.54 

3000 16 41 0.26 0.00 47.51 

5000 12 54 0.39 0.06 80.47 

8000 8 81 0.35 0.16 118.89 

 



 
 

TABLE VII.  DATASET WITH 10 VARIABLES 

dv
 Total 

iterations
 

Chunk 

size  

System Time 

User System Elapsed 

300 860 3 1.66 0.44 164.38 

400 644 4 1.40 0.27 157.34 

500 516 5 1.20 0.31 152.21 

600 432 6 0.74 0.20 147.34 

700 368 7 0.82 0.15 145.53 

800 324 8 0.81 0.17 143.35 

900 288 9 0.71 0.21 144.32 

1000 260 10 0.55 0.13 140.23 

1200 216 12 0.67 0.12 144.17 

1500 172 15 0.50 0.06 153.33 

2000 132 20 0.47 0.07 168.95 

3000 88 30 0.53 0.13 204.21 

5000 52 50 0.78 0.25 527.03 

8000 36 72 N.A. N.A. N.A. 

 

V. Conclusion 

In this paper, we presented a parallel algorithm for the 
MSD estimators for multivariate outlier detection, along with 
a few examples. The parallelized R function is able to cope 
with a bigger dataset and is applicable not only for the 
practical use of official survey statistics enumeration but also 
for general statistical modeling of big multivariate data in 
business or scientific research. 

All the R packages used and R itself are distributed by the 
Comprehensive R Archive Network (CRAN: http://cran.r-
project.org), including the NNVE function “cov.nnve” of 
library “covRobust”. The parallelized R function code 
developed and tested in this paper has been uploaded to a 
public repository, 
https://github.com/kazwd2008/MSD.parallel/. The original 
single-core function published in [9] is also made available at 
https://github.com/kazwd2008/MSD/. The BEM function for 
R has been ported by Masato Okamoto of the Ministry of 
Internal Affairs and Communications from the original code 
for S-plus by Cedric Béguin published in [2]. The details of 
the modifications have been documented and made available 
at https://github.com/kazwd2008/BEM/. 

Fig. 2. Outliers in Simulation Data 



 
 

Fig. 3. Outliers in Synthetic Microdata 



TABLE IV.  DEFFERENCE OF FUNDAMENTAL STATISTICS AFTER OUTLIER DETECTION [SYNTHETIC MICRODATA, 10 VARIABLES] 

Statistics 
Annual Income Net Income 

Consumption 

Expenditure 
Food Expenditure 

Housing 

Expenditure 

Original Cleaned Original Cleaned Original Cleaned Original Cleaned Original Cleaned 

Min. 2.490  2.885  4.253  4.735  4.794  4.796  3.776  4.084  0.479  0.479  

Q1 3.683  3.685  5.529  5.531  5.353  5.354  4.717  4.719  3.177  3.179  

Median 3.818  3.819  5.656  5.656  5.467  5.466  4.834  4.835  3.945  3.938  

Mean 3.807  3.809  5.646  5.647  5.477  5.473  4.822  4.825  3.815  3.812  

Q3 3.947  3.947  5.778  5.776  5.587  5.583  4.938  4.939  4.568  4.562  

Max. 4.879  4.615  7.024  6.431  6.894  6.285  5.539  5.539  6.875  5.877  

SD
f
 0.2068 0.2067 0.1896 0.1723 0.8697 0.1677 0.4454 0.4776 0.3212 0.3640 

      

Statistics 
Gas, Electricity and 

Water 
Clothing Health Care 

Transportation and 

Communication 

Culture and 

Amusement 

Original Cleaned Original Cleaned Original Cleaned Original Cleaned Original Cleaned 

Min. 1.651  3.503  1.039  1.938  0.321  1.568  1.807  3.102  1.597  2.635  

Q1 4.137  4.138  3.697  3.702  3.552  3.556  4.367  4.370  4.126  4.132  

Median 4.245  4.246  3.970  3.972  3.855  3.858  4.554  4.555  4.357  4.359  

Mean 4.245  4.247  3.943  3.949  3.819  3.823  4.549  4.549  4.341  4.347  

Q3 4.355  4.355  4.228  4.229  4.117  4.116  4.735  4.734  4.576  4.577  

Max. 5.100  4.937  6.033  5.553  5.955  5.766  6.701  6.030  5.920  5.792  

SD 0.2004 0.1962 0.1793 0.1688 0.8637 0.1637 0.4320 0.4659 0.3057 0.3516 

f. SD stands for standard deviation. 
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