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Abstract 

 

There are many competing computational algorithms in multiple imputation. To this date, 

however, it is unknown which of these algorithms outperforms the others under what 

circumstances. In this paper, we describe the mechanisms of various multiple imputation 

algorithms and compare their performance in a variety of situations to determine which 

algorithm is best suited to the imputation of missing values in official economic statistics. 
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1. Introduction 

Due to the missing values in a dataset, not only available data size shrinks and 

efficiency decreases, but also bias is likely to exist if there is a systematic difference 

between respondents and non-respondents. Therefore, we almost always need to deal with 

missing values in one way or another, and multiple imputation has been proposed as a 

method to handle missing data (Rubin, 1987). While the theoretical concept of multiple 

imputation is simple and has been around for decades, the implementation is difficult and 

contentious because making a random draw from the posterior distribution is a 

complicated matter. As a result, there are many competing computational algorithms in 

software. To this date, however, it is unknown which of these algorithms outperforms the 

others under what circumstances. 

In this paper, we describe the mechanisms of various multiple imputation algorithms 

and compare their performance in a variety of situations to determine which algorithm is 

best suited to the imputation of missing values in official economic statistics. Each of the 

algorithms will be judged in many dimensions, such as accuracy in comparison with the 

true values, computational efficiency, and so on. A real application on Turnover in the 

EDINET (Electronic Disclosure for Investors’ NETwork) data will be used to illustrate 

the arguments. 

 

2. Notations and Assumptions of Missing Mechanisms 

Let   an     dataset (  = sample size,   = number of variables). If there are no 

missing values, the distribution of   is normal with mean vector   and variance-

covariance matrix  , i.e.,          . Let i refer to observation index, where        . 

Let j refer to variable index, where        . Let            , where    is the j-th 

column in D and     is the complement of   , i.e., all columns in D except   . Let R a 

response indicator matrix. The dimensions of D and R are the same, and whenever D is 

observed, R = 1; otherwise, R = 0. Also, let      observed data and      missing data: 

             . 
The first assumption is Missing Completely At Random (MCAR), where        

    . The second assumption is Missing At Random (MAR), where        
         . The third assumption is NonIgnorable (NI), where        cannot be 

simplified: R is not independent of D (Little and Rubin, 2002). 

 

3. Multiple Imputation: A Primer 

The theory of multiple imputation was first proposed by Rubin (1978). This section 

briefly summarizes the basic mechanisms of Rubin’s multiple imputation (Rubin, 1987; 

Schafer, 1999; King et al., 2001; Takahashi and Ito, 2012). In multiple imputation, we 

replace missing values by M simulated values, where M > 1. For this purpose, a posterior 
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distribution of the missing data is constructed, conditional on the observed data. Then, a 

random draw is made from this posterior distribution, and M multiply-imputed datasets 

will be created, reflecting the uncertainty about imputation. Separately utilizing each of 

the M multiply-imputed datasets, we carry out statistical analyses and combine the results 

of the M statistical analyses to calculate a point estimate. Multiple imputation (M = 5) is 

schematically shown in Figure 3.1. 

 

 

 
 

Since we assume a multivariate normal distribution, the imputation model of missing 

values is linear. Let     be missing.       refers to all of the observations, except variable 

  , in row i.      is an imputed value, which is obtained using equation (1), where ~ 

signifies random sampling from an appropriate posterior distribution,   is a regression 

coefficient, and   stands for fundamental uncertainty. 

 

                                 

 

Note that the information needed for the calculation of regression coefficients is the 

mean, variance, and covariance, all of which we can find in   and  . Therefore, if   and   

are fully known, the true regression coefficient   can be deterministically calculated 

based on   , and missing values can be deterministically imputed. In this case, the 

likelihood function of complete data is equation (2). 

 

                   

 

   

                  

 

Unfortunately, missing values almost always exist in most datasets. We assume MAR 

in forming the likelihood of observed data     , i.e.,                 . Let us define 

       an observed value of row i in  ,  
     

 a subvector of  , and        a submatrix of  . 

Since the marginal densities are normal, the likelihood function of observed data      is 

equation (3). 

 

                                    

 

   

          

 

Since we do not fully know   and  , we cannot know   with certainty.    in equation 

(1), as opposed to    (ordinary least squares estimate of  ), implies this estimation 

uncertainty. Using the traditional methods, it is not easy to compute equation (3) and to 

randomly draw   and   from this posterior distribution (Allison, 2002). In order to solve 

this problem, various computational algorithms have been proposed in the literature, 

which we will explain in the next section. As of this writing, the relative superiority of 

these algorithms is not fully known. 

Figure 3.1: Schematic Overview of Multiple Imputation 



 

4. Competing Algorithms and Software Programs 

 

4.1 Markov Chain Monte Carlo (MCMC): Data Augmentation 

The original version of multiple imputation proposed by Rubin is based on the well-

known Bayesian computational algorithm, called Markov chain Monte Carlo (MCMC), 

which is proper imputation (Rubin, 1987; Schafer, 1997). 

Monte Carlo is a simulation technique, where a set of independent simulated values 

are generated based on some probability distribution. A Markov chain is a stochastic 

process in which the probability of moving from one position to another at time t in the 

series depends only on the current position,   , in the series; thus, it is conditionally 

independent of the preceding values,          . The basic mechanism of MCMC is that, 

if this chain has run infinitely long, it will find the targeted posterior distribution of 

interest; therefore, we can generate summary statistics from these values by letting the 

chain wander around. The surprising trick behind MCMC is that, although each of the 

simulated values from joint or conditional distributions is serially correlated, these values 

can be, eventually, regarded as independent draws from the marginal distributions. Data 

augmentation is an MCMC computational technique, which makes a successive 

substitution of improved estimates conditional on the preceding value and thus forms a 

Markov chain. The basic mechanism of data augmentation is that, starting from an initial 

value   , we generate imputations from the distribution of missing values given the 

observed values (imputation step) and generate parameter values from the posterior 

distribution (posterior step), and then repeat these two steps (Schafer, 1997; Little and 

Rubin, 2002; Gill, 2008): 

 

I-Step: Generate     
     

 based on                 

P-Step: Generate      based on              
     

  

where   is an unknown parameter and t refers to the number of iterations. 

 

In computer software programs, this type of algorithm is made possible by joint 

modeling (JM), where imputations are drawn from the conditional distribution of the 

multivariate distribution for the missing data (van Buuren and Groothuis-Oudshoorn, 

2011). If the underlying joint distribution can be approximated by the multivariate normal, 

then the statistical analysis will be guaranteed to be valid (Drechsler, 2009). Examples of 

the software using this algorithm are R Package Norm 3.0.0 (Schafer, 2008)
1
 and SAS 

PROC MI 9.3 (SAS Institute Inc., 2011).
2
 

 

4.2 Fully Conditional Specification (FCS): Chained Equations 

One alternative algorithm to MCMC is Fully Conditional Specification (FCS), in 

which the method of imputing multivariate missing data is on a variable-by-variable basis. 

In other words, an imputation model is specified for each incomplete variable, and then 

imputations are iteratively created for each variable. In this algorithm, the multivariate 

distribution          is specified by way of a series of conditional densities 

              , through which    is imputed, given     and R, where   is the unknown 

parameters of the imputation model. First, the marginal distribution is used to make a 

simple random draw. Then, imputation is iterated over the conditionally specified 

imputation models (van Buuren, 2012). There are many conditionally specified 

imputation models, but the most prominent is the MICE algorithm, which stands for the 

Multivariate Imputation by Chained Equations and works as follows. 

Based on the observed values in the dataset and the response mechanism, we specify 

an imputation model for each variable   , which is                        . Then, for each 

variable j, we fill in starting imputations       by making random draws from the observed 

values       . We repeat this process for        . We also repeat this process for 

       . At iteration t,                                              is the complete data 

                                                      
1 Norm 3.0.0 works only in R 2.9.2 or before. 
2 SAS 9.3 experimentally implements an FCS option, but we did not use this experimental feature in SAS. 



 

except   . Draw the unknown parameters of the imputation model, given the observed 

values, the imputations at t, and the response mechanism; in other words, draw 

                             . Then, draw imputations                                       (van 

Buuren, 2012). 

One advantage of FCS to JM is that imputation is possible even when there are no 

suitable multivariate distributions (van Buuren and Groothuis-Oudshoorn, 2011). 

Examples of the software using this algorithm are R Package MICE 2.13 (van Buuren 

and Groothuis-Oudshoorn, 2011), PASW Missing Values 18 (SPSS Inc., 2009), and 

SOLAS 4.01 (Statistical Solutions, 2011).
3
 

 

4.3 Expectation-Maximization with Bootstrapping (EMB) 

Another emerging algorithm is the Expectation-Maximization with Bootstrapping 

(EMB), which combines the traditional methods of the expectation-maximization and the 

non-parametric bootstrapping. 

In the EM algorithm, we first assume a certain distribution and the starting values for 

the mean and the variance. Using these tentative starting values, an expected value of 

model likelihood is calculated, the likelihood is maximized, model parameters are 

estimated that maximize these expected values, and then the distribution is updated. We 

repeat the expectation and the maximization steps until the values converge, whose 

properties are known to be a maximum likelihood estimate. Formally, the expectation-

maximization can be summarized as follows (Schafer, 1997; Watanabe and Yamaguchi, 

2000; Little and Rubin, 2002). Starting from an initial value   , repeat the following two 

steps: 

 

E-step:                                    , where        is log likelihood. 

M-step: Maximize                     with respect to  . 

Under certain conditions, it is proven that            . 
 

The non-parametric bootstrapping method utilizes the observed sample as the pseudo-

population: A subsample of size n is randomly drawn from this observed sample of size n 

with replacement, and this process is repeated M times (Wooldridge, 2002). 

Combining these two algorithms, the EMB algorithm works as follows. Suppose that, 

in some incomplete data (sample size = n), q values are observed and n – q values are 

missing. We first apply the non-parametric bootstrapping method to obtain bootstrap 

subsamples of size n to be drawn from this incomplete data M times. Next, the EM 

algorithm is applied to each of these M bootstrap subsamples to calculate M point 

estimates of   and  , which allows us to impute missing values by forming M equations 

of equation (1). As a result, M multiply-imputed datasets are constructed (Congdon, 

2006; Honaker and King, 2010). Unlike the above two algorithms, we do not need to 

resort to the Cholesky decomposition
4
 in the bootstrap method and do not need to make a 

draw from the    distribution (van Buuren, 2012). Therefore, it is expected to be 

computationally more efficient than the MCMC methods. R package Amelia II (version 

1.6.1) is the software using this algorithm (Honaker, King, and Blackwell, 2011).   

 

5. Results of Comparison Using the EDINET Data & the Simulation Data
5
 

The data we used are the EDINET data (Financial Services Agency, 2011). Our 

dataset has three variables (n = 3,042). Turnover (unit = million yen) is our dependent 

variable, in which we artificially create missing values. The other two variables are the 

explanatory variables: Worker (unit = person) and Capital (unit = million yen).  

Intuitively, the number of workers implies the size of manpower in a company; thus, 

as the number of workers increases, the amount of turnover is expected to increase. Also, 

the amount of capital signifies a company’s business size; thus, as the amount of capital 

                                                      
3 SOLAS is an example of FCS, but does not iterate (van Buuren and Groothuis-Oudshoorn, 2011). 
4 The Cholesky Decomposition (a.k.a the Cholesky factorization) is that if A is a positive symmetric definite 

matrix, i.e.,     , then there is a matrix H such that       , where H is lower triangular with positive 

diagonal elements (Leon, 2006). 
5 Due to limited space, we showed a sketch of the results. Details will be reported during the presentation. 



 

increases, the amount of turnover is expected to increase. The model we used is natural 

logarithm. In the original dataset, there are no missing values in Turnover, meaning that 

we know the true values in this variable. For the purpose of experiment, we artificially 

created missing values in Turnover, making a super variable x, which combines 

information from Worker and Capital. The entire dataset was sorted in the increasing 

order of x. Then, we deleted the values of Turnover when the values of x are small. 

Finally, we deleted x. Thus, the missing mechanism is MAR. The rate of missing values 

is 30%. 

Using the EDINET data, we compared the performance of the above-mentioned 

multiple imputation software programs as follows.
6
 First, we set the number of multiply-

imputed datasets as 20. We used 100 simulation seeds and compared the 6 software 

programs; thus, there are a total of 600 trials. We compared the difference between the 

true mean of Turnover and that of the multiply-imputed Turnover variable. We also 

checked the difference between the true standard deviation of Turnover and that of 

Turnover based on the multiply-imputed datasets. Furthermore, we compared the true 

regression coefficients and those based on the multiply-imputed datasets. Finally, we 

compared the true t-statistics and those based on the multiply-imputed datasets. 

Table 5.1 presents preliminary, tentative results (as of April 30, 2013), which shows 

the average of the absolute differences between the true value and the estimates from 

each program based on the 100 trials. As for the estimation of the mean of turnover, the 

differences between SOLAS
7
 and SAS/SPSS are statistically insignificant at the 99% 

level, respectively. The differences between SOLAS and NORM/MICE/AMELIA are 

statistically significant at the 99% level, respectively. NORM performs better than 

SOLAS. On the other hand, SOLAS performs better than MICE and AMELIA. However, 

the substantive differences between SOLAS and these three programs are not large. As 

for the estimation of the standard deviation of turnover, none of the differences among the 

programs is statistically significant at the 99% level. Also, as for the estimation of the 

regression coefficient and its associated t-statistics, none of the differences among the 

programs is statistically significant at the 99% level. Thus, what we basically found is 

that there are no significant differences across the six software programs in terms of the 

accuracy of imputation. 

 

Table 5.1: Average of Absolute Differences (Welch Two-Sample t-test) 
 SOLAS NORM SAS MICE SPSS AMELIA 

mean 0.007 *0.004 0.006 *0.010 0.005 *0.011 

std. dev. 0.048 0.048 0.047 0.049 0.047 0.047 

reg. coef. 0.050 0.050 0.049 0.049 0.049 0.049 

t-statistic 6.836 6.983 6.787 6.389 6.745 6.302 
Note: std. dev. refers to the standard deviation. reg. coef. refers to the regression coefficient of worker on 

turnover. t-statistic refers to the t-statistics of worker on turnover. * shows that the difference between each 

program’s estimate and that of SOLAS is statistically significant at the 99% level. 

 

Table 5.2 shows whether each program can handle a simulated gigantic dataset. We 

found that AMELIA ran quite fast followed by SAS, MICE, SPSS, and SOLAS. We also 

found that Norm was not even able to run this large dataset. Thus, there are significant 

differences in terms of the computational efficiency among the software programs. 

 

Table 5.2: Simulation (500,000 observations, 10 variables, MCAR, missing rate = 30%) 
 SOLAS NORM SAS MICE SPSS AMELIA 

time 8m8s Not Run 4m3s 5m59s 6m30s 3m17s 
Note: time = the time to complete multiple imputation (M = 5) on the large dataset, m = minutes, s = seconds, 

and Not Run = the program not able to complete multiple imputation on this large dataset. The maximum 

number of iterations is set to 20. 

                                                      
6 This paper is by no means the first of comparing various multiple imputation algorithms. Allison (2000) and 

Horton and Lipsitz (2001) are probably two of the first research articles. Also see Allison (2002), Horton 

and Kleinman (2007), and Lin (2010) for the historical development of various multiple imputation 

algorithms. This paper aims to represent the state of the art of multiple imputation, because most of these 

algorithms have gone through extensive updates over the past several years. 
7 We thank Statistical Solutions for providing us with a free edition of SOLAS 4.01 for this experiment. 



 

6. Conclusions 

This paper described the mechanisms of various multiple imputation algorithms and 

compared their performance. We showed that none of the multiple imputation algorithms 

was clearly superior about the accuracy of imputation, but that some algorithms were 

markedly superior to the others as to the computational efficiency. However, it is too 

early to make a final call as of this writing, since different algorithms are expected to 

work differently in various settings. In future research, we intend to diversify the 

experimental settings to account for this. 
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