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1. INTRODUCTION 

The robust ratio estimator described in this paper was developed for the imputation of the 

2016 Economic Census for Business Activity in Japan. 

The 2016 Census was conducted by the Ministry of Internal Affairs and Communications 

and the Ministry of Economy, Trade and Industry on June 1, 2016.  It aims to identify the 

structure of establishments and enterprises in all industries on a national and regional level, 

and to obtain basic information to conduct various statistical surveys by investigating the 

economic activity of these establishments and enterprises. 

The major corporate accounting items, such as sales, expenses and salaries, surveyed by 

the census require imputation to avoid bias.  Although ratio imputation is a leading 

candidate, it is well known that the ratio estimator is very sensitive to outliers; therefore, 

we need to take appropriate measures for this problem. 

2. METHODS 

Conventional ratio estimator has a heteroscedastic error term that is proportional to the 

variance of x.  We first segregate the homoscedastic error term with no relation to x, from 

the original error term.  It is necessary to robustify the estimator by means of M-estimation 

for regression.  The reformed estimator can be expanded into different error terms with 

regards to its relationship with x.  The different error terms give dissimilarity to the 

characteristics of the estimator.  A few examples are briefly described below. 

2.1. Ratio Imputation 

Ratio imputation is a special case of regression imputation [1].  When there are missing 

values in the target variable y, a single auxiliary variable x without missing values is used 

to estimate the missing y values.  Therefore, x must be chosen from the variables that are 

highly correlated with y.  The imputation model is as follows: 

𝑦𝑗 = 𝑟𝑥𝑗 + 𝜖𝑗 ,                                                                            (1) 

where 𝑖 = 1, … , 𝑁 of (𝑥, 𝑦) is observed on each of the N units in the domain for imputation.  

Because the true ratio r is usually unknown due to the missing values of y, the estimated 

ratio 

𝑟̂ =
∑ 𝑦𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

,                                                                                     

is used to substitute the missing y values such that 

𝑦̂𝑖 = 𝑟̂𝑥𝑖,                                                                                           
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where 𝑖 = 1, … , 𝑛 of (𝑥, 𝑦) is observed on each of the n units in the domain excluding 

those with missing values.  The ratio estimator of the model (1) is BLUE (the best linear 

unbiased estimator) under the following two conditions: (i) the relationship between the 

variables y and x is a straight line through the origin and (ii) the variance of y about this 

line is proportional to x [2]. 

2.2. Generalization of the ratio estimator 

The model 

𝑦𝑖 = 𝑎0 + 𝑎1𝑥𝑖 + 𝜀𝑖,                                                                        

is an example of a simple regression where 𝑎0 is the intercept and 𝑎1 is the slope.  The 

error term of the model is supposed to be normal with a mean of 0 and a constant variance, 

which can be written as 𝜀𝑖~𝑁(0, 𝜎2).  Meanwhile, the error term 𝜖𝑖 of the ratio estimator 

model in (1) should be proportional to √𝑥, i.e. the variance of 𝜖𝑖 is proportional to x and 

can be written as 𝜖𝑖~𝑁(0, 𝑥𝜎2).  Because these two error terms have the relationship 𝜖𝑖 =

√𝑥𝑖𝜀𝑖, the ratio model, Eq. (1), can be written in the following form: 

𝑦𝑖 = 𝑟𝑥𝑖 + √𝑥𝑖𝜀𝑖.                                                                     (2) 

We refer to 𝜀𝑖 in the ratio estimator model hereafter as the quasi-error term because the 

true error term is 𝜖𝑖.  Then, we can extend the model (2), to have an error term that is 

proportional to 𝑥𝑖
𝛽

 as follows:  

𝑦𝑖 = 𝑟𝑥𝑖 + 𝑥𝑖
𝛽

𝜀𝑖 .                                                                       (3) 

The corresponding ratio estimator becomes 

𝑟̂ =
∑ 𝑦𝑗𝑥𝑗

1−2𝛽𝑛
𝑗=1

∑ 𝑥𝑗
2(1−𝛽)𝑛

𝑗=1

.                                                                  (4) 

This model (3) and its estimator (4) broaden the definition of the conventional ratio 

estimator.  Eq. (3) contains various models according to the value of 𝛽.  A few examples 

are shown in Table 1.  The original ratio estimator corresponds to case B’. 

Table 1. Variations in the estimator depending on 𝜷 

Case 𝜷 Model Estimator Quasi-error term 

A’ 𝛽 = 1 𝑦𝑖 =  𝑟𝑥𝑖 + 𝜀𝑖𝑥𝑖 𝑟̂ =
1

𝑛
∑

𝑦𝑖

 𝑥𝑖

 𝜀𝑖 =
𝑦𝑖

𝑥𝑖
− 𝑟 ~ 𝑁(0,  𝜎2) 

B’ 𝛽 = 1/2 𝑦𝑖 =  𝑟𝑥𝑖 + 𝜀𝑖√𝑥𝑖 𝑟̂ =
∑ 𝑦𝑖

∑ 𝑥𝑖
 𝜀𝑖 =

𝑦𝑖

√𝑥𝑖

− 𝑟√𝑥𝑖 ~ 𝑁(0,  𝜎2) 

C’ 𝛽 = 0 𝑦𝑖 =  𝑟𝑥𝑖 + 𝜀𝑖 𝑟̂ =
∑ 𝑦𝑖𝑥𝑖

∑ 𝑥𝑖
2  𝜀𝑖 = 𝑦𝑖 − 𝑟𝑥𝑖 ~ 𝑁(0,  𝜎2) 

 

2.3. Characteristics of the models 

Cases A’, B’ and C’ have different features.  Of these models, we focus in particular on 

A’ and B’, because C’ is a regression model without an intercept.  Characteristics of 

regression models are well known and those with homoscedastic error terms do not fit 

the targeted census data.  The ratio estimator A’ is obtained by means of the ratios of 
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each observation.  Even though the estimator A’ has the possibility of having a very large 

variance due to the formula, it is not significantly affected by large values of x and/or y, 

unlike B’.  The conventional ratio estimator B’ is a ratio of the sums or means of x and y.  

The estimator is very stable, i.e. it is less likely to have a very large variance.  However, 

the estimation is highly dependent on the large-scale observations of x and y. 

2.4. Robustification 

The robustified generalized ratio estimator of (4) is derived by means of M-estimation as 

follows: 

𝑟̂𝑟𝑜𝑏 =
∑ 𝑤𝑖𝑦𝑖𝑥𝑖

1−2𝛽

∑ 𝑤𝑖𝑥𝑖
2(1−𝛽)

,                         

where 𝑤𝑖 is obtained by Tukey’s biweight function as shown below: 

𝑤 (
𝜀̌

𝜎
) = 𝑤(𝑒) = {

[1 − (
𝑒

𝑐
)

2

]
2

       |𝑒| ≤ 𝑐 

0                            |𝑒| > 𝑐.

 

From (3), the quasi-residuals based on the homoscedastic quasi-error term are derived such 

that 

𝜀𝑖̌ =
𝑦𝑖 − 𝑟̂𝑥𝑖

𝛽

𝑥𝑖
𝛽

.                                   

The cases with 𝛽 = 1 and 𝛽 = 1/2 are shown in Table 2.  The corresponding models are 

similar to those for cases A’ and B’. 

Table 2. The robustified estimators 

Case 𝜷 Estimator Quasi-residuals 

A 𝛽 = 1 𝑟̂𝑟𝑜𝑏𝐴 =
∑ 𝑤𝑖(𝑦𝑖/𝑥𝑖)

∑ 𝑤𝑖  
 𝜀𝑖̌ =

𝑦𝑖

𝑥𝑖
 − 𝑟̂𝑟𝑜𝑏𝐴 

B 𝛽 = 1/2 𝑟̂𝑟𝑜𝑏𝐵 =
∑ 𝑤𝑖𝑦𝑖

∑ 𝑤𝑖𝑥𝑖
 𝜀𝑖̌ =

𝑦𝑖

√𝑥𝑖

− 𝑟̂𝑟𝑜𝑏𝐵√𝑥𝑖 

3. RESULTS 

The purpose of the study was to apply a robustified ratio estimator to the 2016 Economic 

Census.  Model selection between the estimators A and B was made using previous census 

data.  The estimator B was chosen based on the simulation results. 

Then, random number simulations were conducted to confirm the performance.  These 

simulations were performed with x uniform random numbers from 1000 to 1100, the ratio 

𝑟 = 2 and the quasi-error terms 𝜀𝑖 were random numbers following the t-distribution of 

the degrees of freedom: 1, 2, 3, 5, 10 and infinite.  The objective variable y was calculated 

based on the model B’ using the above mentioned components.  For each simulation, 

100,000 data-sets of size n = 100 were generated with a given degree of freedom of the t-

distribution for the quasi-error term. Table 3 shows the number of iterations needed to 

compute the estimator B.  At least two iterations are necessary because the initial value 

calculation is counted as one iteration.  As the tails of the quasi-error terms become longer, 
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the number of iterations tends to increase; however, it is obvious that the conversion is 

sufficiently fast.  Table 4 shows the accuracy of the estimator B compared to the estimator 

B’.  It illustrates that the estimator B successfully improved the root mean square error 

(RMSE) when the quasi-error term had longer tails.  Moreover, the loss of efficiency for 

normal error terms was 5%.  In addition, it was confirmed that the estimation is not biased 

compared to the true value of r. 

Table 3. Computational efficiency of the estimator B 

Repeat counts Degree of freedom (t-distribution) 

1 2 3 5 10 Inf. 

2 22006 70557 90232 98180 99818 99995 

3 75142 29435 9768 1820 182 5 

4 2852 8 0 0 0 0 

Total 100000 100000 100000 100000 100000 100000 

Table 4. RMSE and relative efficiency 

Estimator Degree of freedom (t-distribution) 

1 2 3 5 10 Inf. 

B’ (not robust) 9000000 1.46 0.28 0.16 0.12 0.10 

B (robust) 0.66 0.24 0.17 0.14  0.12 0.10 

Relative Efficiency 0.00 0.16 0.61 0.87 0.98 1.05 

 

The details of the results will be presented and described in the full paper. 

4. CONCLUSIONS 

The proposed robustified ratio estimator broadens the conventional definition of the ratio 

estimator with regards to the variance of the quasi-error term in addition to effectively 

alleviating the influence of outliers. 

The estimator of 𝛽 = 1/2 was adopted to represent the major corporate accounting items of 

the 2016 Economic Census for Business Activity.  Robust estimators usually have 

degraded efficiency under the condition of normal error when the original ratio estimator 

is the most efficient; however, the degradation of efficiency is limited to 5% for the adopted 

estimator.  Because the surveyed data tend to have longer tails, the application of the robust 

estimator is expected to contribute to the accuracy of the Census results. 
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