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eneralized robust ratio estimator for imputation
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Robust estimation of regression model
Iterative Reweighted Least Squares (IRLS)

Regression by OLS

¥

Robust Regression (M-estimators)

Outliers may have considerable influence

IRLS controls the influence of outliers by down weight

[advantage]
® casy to calculate => frequently used in practice

[disadvantages]
® the breakdown point is 1/n as same as the OLS
® not robust for outliers in explanatory variables

Holland & Welsch (1977) Robust Regression Using Iteratively
Reweighted Least-Squares, Communication in Statistics —-Theory and
Methods, A6(9), 813-827.
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Homoscedastic error

How IRLS works (regression model)

Scatter plot Initial estimation: OLS (red line)
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OLS: Ordinary Least Squares;

Features of the Tukey's biweight

Huber weight

Tukey's biweight
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Huber weight alleviate the influence of
outliers but never eliminate it
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Tukey’s biweight eliminates influence of
outliers with very large residuals

Features in common

® The error term tends to have longer
tails regarding survey data
= Existence of outliers

® Outliers can be very influential to the
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/2: ordinary ratio estimator
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Robustification of the ratio estimator
Making the error term homoscedastic

e~ N(0,xc%): y; = Bx; + €;

e~ N(0,0%):
Robustification
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LW

,Brob

N

® Quasi-residual: &

® Weight function:
® Scale parameter:
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to standardize residuals: e; = 17 /6
AAD: Average Absolute Deviation

Examples: Random data following the model y = Bx + ex? with different ys
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Practical application: 2016 Economic Census for Business Activity
Imputation of the major corporate accounting items such as sales, salaries, and expenditures

Objectives of the Census:

- Identify the structure of establishments and enterprises in all industries on a national and regional
level by investigating their economic activity

- Obtain fundamental information for conducting various statistical surveys

Date of Census:

Coverage:

Salaries

1 Jun. 2016
All establishments and enterprises in Japan

An example

Smaller enterprises
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- Robust Ratio Estimator

Ordinary Ratio Estimator
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