New Techniques and Technologies for Statistics (NTTS) Conference, Brussels, Belgium, 14-16, Mar. 2017.

Generalized robust ratio estimator for imputation Kazumi Wada, Keiichiro Sakashita

Regression model $y = \alpha + \beta x + \varepsilon$

Robust estimation of regression model Iterative Reweighted Least Squares (IRLS)

Features in common

- The error term tends to have longer tails regarding survey data
 ⇒ Existence of outliers
- Outliers can be very influential to the estimation

Differences

- No intercept
- Heteroscedastic error term proportional to $\sqrt{x_i}$

Generalization

Error term proportional to $x_i^{1/2} \implies x_i^{\gamma}$

Robustification of the ratio estimator

1. Making the error term homoscedastic

Regression by OLS

Outliers may have considerable influence

Robust Regression (M-estimators)

IRLS controls the influence of outliers by down weight

[advantage]

• easy to calculate => frequently used in practice

[disadvantages]

- the breakdown point is 1/n as same as the OLS
- not robust for outliers in explanatory variables

Holland & Welsch (1977) Robust Regression Using Iteratively Reweighted Least-Squares, Communication in Statistics –Theory and Methods, A6(9), 813-827.

 $X \gamma$: an arbitral constant

 $\widehat{\xi} \stackrel{\epsilon \sim N(0, x\sigma^2): y_i = \beta x_i + \epsilon_i}{\varepsilon \sim N(0, \sigma^2): y_i = \beta x_i + \epsilon_i \sqrt{x_i}} \quad \left(\because \varepsilon_i = \frac{\epsilon_i}{\sqrt{x_i}} \right)$ 2. Robustification $\widehat{\beta}_{rob} = \frac{\sum w_i y_i}{\sum w_i x_i}$ • Quasi-residual: $\widecheck{\varepsilon}_i = \frac{y_i \sqrt{w_i}}{\sqrt{x_i}} - \widehat{\beta}_{rob} \sqrt{w_i x_i}$ • Weight function:
Tukey's biweight (c=8)
• Scale parameter: $\widehat{\sigma}_{AAD} = \frac{1}{n} \sum_{i=1}^{n} |\widecheck{\varepsilon}_i|$ to standardize residuals: $e_i = r_i / \widehat{\sigma}$ AAD: Average Absolute Deviation

Examples: Random data following the model $y = \beta x + \varepsilon x^{\gamma}$ with different γs $\gamma = 0$: regression without intercept $\gamma = 1/2$: ordinary ratio estimator

Practical application: 2016 Economic Census for Business Activity Imputation of the major corporate accounting items such as sales, salaries, and expenditures

Objectives of the Census:

- Identify the structure of establishments and enterprises in all industries on a national and regional level by investigating their economic activity
- Obtain fundamental information for conducting various statistical surveys

Date of Census: 1 Jun. 2016

Coverage: All establishments and enterprises in Japan

独立行政法人統計センター

National Statistics Center (NSTAC), Japan