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Missing Data and Ratio Imputation 

 Missing data problems are ubiquitous in 
many fields. 

 In official statistics, one of the common 
treatments of missing data is ratio 
imputation. 
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1. Missing Data Problems and Existing Imputation Methods 



Single Ratio Imputation Model 

 Form of a simple regression model without 
an intercept 

 Slope coefficient calculated by the ratio 
between the means of two variables 

       𝑌 𝑖1 = 𝜔 𝑌𝑖2 (Deterministic) 

       𝑌 𝑖1 = 𝜔 𝑌𝑖2 + 𝑢 𝑖 (Stochastic) 

                where 𝜔 = 𝑌 1,𝑜𝑏𝑠 𝑌 2,𝑜𝑏𝑠  

de Waal et al. (2011) 

Thompson & Washington (2012) 

Office for National Statistics (2014) 
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1. Missing Data Problems and Existing Imputation Methods 



Multiple Imputation 

 Recommended practice from statisticians  

 Known to be the gold standard of treating 
missing data 

 

 

Rubin (1987) 

Little & Rubin (2002)  

Baraldi & Enders (2010) 

Cheema (2014) 
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1. Missing Data Problems and Existing Imputation Methods 



Multiple Imputation 

 Multiple imputation in theory 

 Randomly draw several imputed values 
from the distribution of missing data.  

 True distribution of missing data 

 Unobserved by definition 

 Always unknown 

 Solution 

 Estimate the posterior distribution of 
missing data based on observed data, 
and make a random draw of imputed 
values.  6 

1. Missing Data Problems and Existing Imputation Methods 



Existing Software for Multiple Imputation 

 R-Packages 

 Amelia II (EMB) 

 MICE (FCS) 

 NORM (MCMC) 

 Commercial Software Programs 

 SAS Proc MI (MCMC/FCS) 

 SOLAS (FCS) 

 SPSS Missing Values (FCS) 
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None of them allows to 
perform multiple ratio 
imputation. 

1. Missing Data Problems and Existing Imputation Methods 
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1. Missing Data Problems and Existing Imputation Methods 



 

 

Theory of Multiple Ratio 
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Multiple Ratio Imputation 

 Literature 

 Devoid of multiple ratio imputation 

 This paper 

 Proposes a novel application of the 
Expectation-Maximization with 
Bootstrapping (EMB) algorithm to ratio 
imputation 

 Proposes multiple ratio imputation 
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2. Theory of Multiple Ratio Imputation 



Multiple Ratio Imputation 

 Value of 𝜔 

 Estimated by 𝜔 = 𝑌 1,𝑜𝑏𝑠 𝑌 2,𝑜𝑏𝑠  

 To create multiple ratio imputation  

 The mean vector is what needs to be 
randomly drawn from the posterior 
distribution of missing data given 
observed data. 
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2. Theory of Multiple Ratio Imputation 



Multiple Ratio Imputation by the EMB Algorithm 
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2. Theory of Multiple Ratio Imputation 
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Monte Carlo Settings 1 

 1,000 iterations 

 Random draw from the following 
multivariate normal distribution: 

 Variables y1 and y2 are normally 
distributed with the mean vector (6, 10) 
and the standard deviation vector (1, 1). 

 The correlation between y1 and y2 is 
set to 0.6.  
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3. Monte Carlo Evidence 



Monte Carlo Settings 2 

 Sample Size 

 n = 50, n =100, n =200, n =500, and n 
=1,000 

 Three data generation processes 

 MCAR, MAR, and NI 

 Average missing rates 

 15%, 25%, and 35% 
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3. Monte Carlo Evidence 



Monte Carlo Settings 3 

 RRMSE: Relative Root Mean Square Errors  

 Mean 

 Standard Deviation 

 t-statistics in regression 

 Comparisons of 

 Deterministic ratio imputation 

 Stochastic ratio imputation 

 Regular multiple imputation (Amelia II) 

 Multiple ratio imputation 
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3. Monte Carlo Evidence 



Monte Carlo Evidence: Mean 
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3. Monte Carlo Evidence 



Monte Carlo Evidence: Mean 

 In all of the 45 patterns, deterministic 
ratio imputation and multiple imputation 
both outperform listwise deletion. 

 Between the ratio imputation methods, 
deterministic ratio imputation slightly 
performs better than multiple ratio 
imputation in 32 out of the 45 patterns 
with 13 ties. 

 However, 43 out of the 45 patterns are 
within a 0.01-point difference in terms of 
the RRMSE. 
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3. Monte Carlo Evidence 



Monte Carlo Evidence: Mean 
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3. Monte Carlo Evidence 



Monte Carlo Evidence: Standard Deviation 
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3. Monte Carlo Evidence 



Monte Carlo Evidence: Standard Deviation 

 In all of the 45 patterns, multiple ratio 
imputation always outperforms listwise 
deletion. 

 Between the ratio imputation methods, 
multiple ratio imputation often performs 
better than stochastic ratio imputation, 43 
out of the 45 patterns. 

 Therefore, this study contends that 
multiple ratio imputation is the preferred 
method for the estimation of the standard 
deviation. 
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3. Monte Carlo Evidence 



Monte Carlo Evidence: t-statistics in Regression 
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3. Monte Carlo Evidence 



Monte Carlo Evidence: t-statistics in Regression 

 In all of the 45 patterns, regular multiple 
imputation and multiple ratio imputation 
both outperform listwise deletion.  

 Multiple ratio imputation always 
outperforms regular multiple imputation 
under the condition where the true 
population model satisfies the assumption 
of ratio estimation. 
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3. Monte Carlo Evidence 



Summary of the Findings 
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Mean Std. Dev. t-Stats 

Listwise 
Deletion 

 

Poor 

 

Poor 

 

Poor 

Existing 
Method 

 

Excellent 

 

Fair 

 

Fair 

Multiple Ratio 
Imputation 

 

Excellent 

 

Excellent 

 

Excellent 

3. Monte Carlo Evidence 



 

 

Empirical Example 
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Application to Japanese Economic Census 

 Data: 2012 Economic Census 

 Division I (Wholesale and Retail Trade)  

 Tokyo 

 Target variable for imputation: Turnover 

 Quantity of interest: Mean of turnover 

 Auxiliary variable: Cost 

 Our data 

 Focus on the establishments and 
enterprises with the number of 
employees equal to 1.  
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4. Empirical Example 



Results 

  Listwise 
Deletion 

Deterministic 
Ratio 

Imputation 

Multiple 
Ratio 

Imputation 

Mean 3569.12 3526.73 3526.69 

BISD NA NA 4.74 

CI 
(95%) 

NA NA 3517.21, 
3536.16 
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Note: BISD = Between-Imputation Standard Deviation 

4. Empirical Example 
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